BP-2C

Busbar Protection Instruction Manual

CYG SUNRI CO., LTD.

Preface

User's Guideline

This instruction manual contains full information of the equipment, including function descriptions, logic diagrams, input signals, output signals, setting parameters and technical parameters. It also list the operations on safe handling, commissioning and maintaining of this equipment. The instruction manual can be can be used as a technical reference during the whole product life cycle.

Documentation and manufactured equipments purchased from CYG SUNRI CO., LTD. are dispatched separately due to the necessary manufacturing period. Therefor, they sometimes may not reach the recipients at the same time. Therefore this manual is provided as a technical reference to commission the equipment.

The installation and commissioning personnel should read all relevant chapters carefully and get a thorough knowledge of the contents of this manual, before conducting any operation to the equipment. In this way, the personnel can get the required knowledge in handling electronic equipment.

This manual contains a security chapter which describes the safety precautions recommended when using the equipment. Before installing and using the equipment, this chapter is recommended to be thoroughly read and understood.

Personnel Security

The content in this chapter specifically describes to prevent and reduce the safety accidents in electric power production and construction processures, to ensure the personal safety and health of employees in production activities and to ensure the power grids stable operation and reliable power supply.

Any kind of direcily touching with the metal parts of the electrical equipment should be avoided when electrical equipment is on operation, because of the potential electric shock risk. Neglecting warning notices should be prevent because the improperly operation may damage the device, even cause personnel injury.

The good operating condition of the equipment depends on proper shipping and handling, proper storage, installation, commissioning and maintenance. Therefore, only qualified personnel should be allowed to operate the equipment. Intended personnel are individuals who:

- Have a thorough knowledge of protection systems, protection equipment, protection functions and the configured functional logic in the IEDs;
- Have a basic knowledge in the installation, commissioning, and operation of the equipment;
- Are familiar with the working field where it is being installed;
- Are able to safely perform operations in accordance with accepted safety engineering steps;

- Are authorized to energize and de-energize equipment, and to isolate, ground, and label it;
- Are trained in the maintanence and use of safety apparatus in accordance with safety engineering regulations;
- Have been trained in first aid if any emergency situations happen.

Warning Indications

The following indicators and standard definitions are used:

DANGER! means that death, severe personal injury and considerable equipment damage will occur if safety precautions are disregarded.

WARNING! means that death, severe personal and considerable equipment damage could occur if safety precautions are disregarded.

CAUTION! means that light personal injury or equipment damage may occur if safety precautions are disregarded.

NOTICE! is particularly applies to damage to device and to resulting damage of the protected equipment.

DANGER!

NEVER allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerously high voltage.

WARNING!

ONLY qualified personnel should work on or in the vicinity of this device. This personnel **MUST** be familiar with all safety regulations and service procedures described in this manual. During operating of electrical device, certain part of the device is under high voltage. Severe personal injury and significant device damage could result from improper behavior.

WARNING!

Do **NOT** touch the exposed terminals of this device while the power supply is on. The generated high voltage causes death, injury, and device damage.

WARNING!

Thirty seconds is **NECESSARY** for discharging the voltage. Hazardous voltage can be

present in the DC circuit just after switching off the DC power supply.

CAUTION!

Earthing

Securely earthed the earthing terminal of the device.

• Operating environment

ONLY use the device within the range of ambient environment and in an environment free of abnormal vibration.

Ratings

Check the input ratings **BEFORE** applying AC voltage/current and power supply to the device.

• Printed circuit board

Do NOT attach or remove printed circuit board if the device is powered on.

• External circuit

Check the supply voltage used when connecting the device output contacts to external circuits, in order to prevent overheating.

• Connection cable

Carefully handle connection cables without applying excessive force.

NOTICE!

The firmware may be upgraded to add new features or enhance/modify existing features, please **MAKE SURE** that the version of this manual is compatible with the product in your hand.

Copyright © 2017 CYG SUNRI CO., LTD. All rights reserved.

This document contains confidential information of CYG SUNRI CO., LTD. Any improper use of the document or information contained herein in any way (including, but not limited to, total or partial disclosure, reproduction, or dissemination) by organizations or persons is prohibited. CYG SUNRI CO., LTD. reserve all rights to this document and to the information contained herein.

CYG SUNRI CO., LTD. has made every effort to ensure that this document is accurate. CYG SUNRI CO., LTD. disclaims liability for any inaccuracies or omissions that may have occurred. If nevertheless any incorrect, misleading, or incomplete information are found, comments and suggestions for correction or improvement are greatly appreciated. CYG SUNRI CO., LTD. reserves the rights to upgrade the products and to make improvements to the documents without notice.

The users are responsible for understanding the information and should not rely on this information as absolute. If the users do act upon the suggestions contained in this document, the users should be responsible for themself and their actions.

CYG SUNRI CO., LTD. Headquarters: No.13, Keji North 1st Road, North Area of Hi-tech Industral Park, Nanshan District, Shenzhen, China	Tel: +86-400-678-8099 Website: http://www.sznari.com
P/N: ZL_BP-2C_X_Instruction Manual_EN_Overseas General_X	Version: 2.04

Documentation Outline

The manual provides a functional and technical description of this relay and a comprehensive set of instructions for the relay's use and application.

All contents provided by this manual are summarized as below:

1 Briefly Introduction

Briefly introduce the application scope, the selectable functions and product features about this equipment.

2 Technical Specifications

Introduce the technical specifications about this relay, including electrical specifications, mechanical specifications, ambient temperature and humidity range, communication interface parameters, type tests, setting ranges and accuracy limits etc.

3 Protection Functions

Provide a comprehensive and detailed protection function description of all protection modules.

4 Supervision Functions

Introduce the automatic self-supervision function of this equipment.

5 Monitoring&Control

Introduce the measurement, controlling, signaling, recording and other functions of this relay.

6 Hardware

Introduce the main module functions of this relay and describe the definition of all terminals of each module.

7 Human Machine Interface

Include all the menus of device.

8 Configuration Function

Introduce the configurable function (such as protection function configuration, LED configuration, binary input configuration and binary output configuration, analog quantities channels etc.) of this relay.

9 Communication Protocol

Introduce the communication interfaces and protocol that this relay contains. IEC60970-5-103 and IEC61850 protocols are introduced in details.

10 Commissioning

Introduce how to commission this relay, check the calibration and test all the function of this relay.

11 Installation

Recommend on unpacking, handling, inspection and storage of this relay. A guide to the mechanical installation and electrical wiring of this relay is also provided, including earthing recommendations. Some typical wiring connection is demonstrated in this manual manual as well.

12 Maintenance

A general maintenance steps for this device is outlined.

13 Decommissioning and Disposal

A general decommissioning and disposal steps for this relay is outlined.

14 Manual Version History

List the instruction manual versions and their corresponding modification history records.

Table of Contents

Prefacei	İ
User's Guidelinei	i
Personnel Securityi	i
Warning Indicationsii	i
Documentation Outlineiv	,
Table of Contentsa	l
1 Briefly Introduction1	
1.1 Application Scope1	
1.2 Product Function1	
1.3 Product Features1	
2 Technical Specifications4	-
2.1 Electrical Specifications4	ŀ
2.1.1 Current Transformer Ratings4	ŀ
2.1.2 Voltage Transformer Ratings4	ŀ
2.1.3 Auxiliary Power Supply4	ŀ
2.1.4 Binary Input4	ŀ
2.1.5 Binary Output	5
2.2 Mechanical Specifications5	;
2.3 Ambient Temperature and Humidity Range5	;
2.4 Communication Interfaces6	;
2.4.1 Ethernet Port6	;
2.4.2 Serial Port6	;
2.4.3 Time Synchronization7	,
2.4.4 Ethernet Port for Debugging7	,
2.5 Type Tests7	,
2.5.1 Environmental Tests	,
2.5.2 Mechanical Tests8	3

2.5.3 Electrical Tests	8
2.5.4 Electromagnetic Compatibility	8
2.6 Terminals	10
2.7 Measurement Range and Accuracy	10
2.8 Protection Function Features	10
2.8.1 Busbar Differential Protection	10
2.8.2 BC/BS Breaker Failure Protection	10
2.8.3 Feeder End-fault Protection	10
2.8.4 Feeder Breaker Failure Protection	10
2.8.5 Phase Overcurrent Protection	11
2.8.6 Ground Overcurrent protection	11
2.8.7 Pole Discordance Protection	11
3 Protection Functions	
3.1 Overview	12
3.2 Busbar Differential Protection 87B	14
3.2.1 Overview	14
3.2.2 Protection Principle	16
3.2.3 Differential circuits	19
3.2.4 Voltage Block Element 87B_VBE	24
3.2.5 Detection of CT Saturation	25
3.2.6 Logic	26
3.2.7 Settings	27
3.3 BC/BS Breaker Failure Protection 50BF	27
3.3.1 Overview	27
3.3.2 Protection Principle	
3.3.3 Logic	29
3.3.4 Settings	
3.4 BC/BS Dead Zone Protection 50DZ	
3.4.1 Overview	
3.4.2 Protection Principle	

3.4.3 Logic	
3.5 Feeder End-fault Protection 50FDZ	
3.5.1 Overview	
3.5.2 Protection Principle	
3.5.3 Logic	
3.5.4 Settings	
3.6 Feeder Breaker Failure Protection 50BF	
3.6.1 Overview	
3.6.2 Protection Principle	
3.6.3 Logic	41
3.6.4 Settings	43
3.7 Phase OverCurrent Protection 50/51P	44
3.7.1 Overview	
3.7.2 Protection Principle	45
3.7.3 Logic	
3.7.4 Settings	47
3.8 Ground OverCurrent Protection 50/51N	47
3.8.1 Overview	47
3.8.2 Protection Principle	
3.8.3 Logic	
3.8.4 Settings	
3.9 Pole DiscordanceProtection 52PD	51
3.9.1 Overview	51
3.9.2 Protection Principle	
3.9.3 Logic	
3.9.4 Settings	53
3.10 Three-phase Overvoltage protection (59P)	53
3.10.1 Overview	53
3.10.2 Protection Principle	54
3.10.3 Logic	

3.10.4 Settings	57
3.11 Three-phase Undervoltage Protection (27P)	57
3.11.1 Overview	57
3.11.2 Protection Principle	58
3.11.3 Logic	60
3.11.4 Settings	61
4 Supervision Functions	63
4.1 Overview	63
4.2 Supervision Alarm and Block	63
4.3 CT Circuit Supervision CTS	64
4.3.1 Overview	64
4.3.2 Protection Principle	65
4.3.3 Logic	66
4.3.4 Settings	66
4.4 VT Fuse Failure Supervision VTS	67
4.4.1 Overview	67
4.4.2 Protection Principle	67
4.4.3 Logic	68
4.4.4 Settings	69
5 Monitoring&Control	70
5.1 Overview	70
5.2 Measurement	70
5.2.1 Protection Sampling	70
5.2.2 Metering	70
5.3 Apparatus Control	70
5.4 Signaling	71
5.5 Event Recording	71
5.6 Fault and Disturbance Recording	72
6 Hardware	73
6.1 Overview	73

6.2 Hardware Module	74
6.3 Human Machine Interface Module	75
6.4 Power Supply Module	75
6.5 Main CPU Module	77
6.6 AD module	79
6.7 Transformer Module	79
6.8 Binary Input Module	82
6.9 Binary Output Module(SR7300)	84
6.10 Binary Output Module(SR7302)	86
6.11 Binary Output Module(SR7303)	
6.12 Binary Input/Output Module	90
7 Human Machine Interface	93
7.1 Overview	93
7.1.1 Design Structure	
7.1.2 Function mode	
7.1.3 Operating panel keypad and keys	
7.1.4 Indication of LED	
7.1.5 Configurable keys	97
7.2 LCD Diplay description of HMI	97
7.2.1 Ovierview	97
7.2.2 Normal display structure of LCD	97
7.2.3 Main menu display	
7.3 Sub menu functions of main menu	
7.3.1 Physical Information	
7.3.2 Review Information	101
7.3.3 Monitoring Information	103
7.3.4 Event Information	106
7.3.5 Record Information	111
7.3.6 Setting Information	
7.3.7 Configuration Information	

7.3.8 Test Information	
7.3.9 Clear Information	
7.3.10 Language Information	
8 Configurable Function	
8.1 General Description	123
8.2 Introduction of PRS IED Studio Software	123
9 Communication Protocol	
9.1 Overview	124
9.2 Rear Communication Interface	124
9.2.1 Ethernet Interface	
9.3 Network Topoloty	125
9.3.1 Star Topology	125
9.3.2 PRP Topology	
9.3.3 RSTP Topology	125
9.4 IEC61850 Protocol	125
9.4.1 Overview	
9.4.2 Communication Profiles	
9.4.3 Data set and control block	
9.4.4 Logic nodes and data modeling	
9.5 DNP3.0 Protocol	133
9.5.1 Overview	
9.5.2 Link Layer Functions	
9.5.3 Transport Functions	
9.5.4 Application Layer Functions	
10 Commissioning	
10.1 General	136
10.2 Safety Instructions	136
10.2.1 Safety Identification	136
10.2.2 Safety Identification Examples	136
10.3 Commission Tools	

10.3.1 Instrumentation and Meters Notice:	138
10.3.2 Tools Requirement:	138
10.4 Commission Preparation	138
10.4.1 Basic Knowledge	138
10.4.2 Operation Preparation	139
10.5 Product Checks	139
10.5.1 Document Check	139
10.5.2 Appearance Inspection	139
10.5.3 Insulation Check	140
10.5.4 External Wiring Check	140
10.5.5 Test Category	140
10.6 With the Relay Energized	141
10.6.1 LCD Display Check	141
10.6.2 Date and Time	141
10.6.3 Light Emitting Diodes (LEDs)	141
10.6.4 Test the AC Current Circuit	142
10.6.5 Test the AC Voltage Inputs	143
10.6.6 Test the Binary Inputs	143
10.6.7 Test the Binary Onputs	144
10.6.8 Protection Function Checks	144
10.6.9 On-load Checks	144
10.6.10 Final Checks	144
11 Installation	146
11.1 General	146
11.2 Safety Instructions	146
11.3 Checking the Shipment	146
11.4 Material and Tools Required	147
11.5 Device Location and Ambient Conditions	147
11.6 Mechanical Installation	148
11.7 Electrical Installation and Wiring	

11.7.1 TA Circuit Connection	149
11.7.2 Power Supply, TV, BI and BO, Signal Wiring	
11.7.3 Grounding	
11.7.4 Shielded cable connection	
11.7.5 Install the optical cable	
11.7.6 Install the communication cable	
11.8 Installation check	151
11.8.1 Check the installation	
11.8.2 Confirm the hardware and software version	
11.8.3 Device start	
12 Maintenance	
12.1 Maintenance General	153
12.2 Regular Testing	153
12.3 Failure Maintenance	153
12.3.1 Hardware Failure	
12.3.2 Software Failure	
12.4 Replace Failed Modules	154
13 Decommissioning and Disposal	
13.1 Decommissioning	155
13.1.1 Switching off	
13.1.2 Disconnecting cables	
13.1.3 Dismantling	
13.2 Disposal	155
14 Manual Version History	

1 Briefly Introduction

1.1 Application Scope

The BP-2C is a numerical busbar differential protection intended for protecting and monitoring various busbars of various voltage level, ranging from 1000kV to 110kV. BP-2C can detect and clear all types of internal falults.

BP-2C provides fast and selective protection, monitoring and control for single busbar, single busbar with single bus coupler, double busbar, double busbar with up to 4 bus couplers, 3/2 breaker busbar, etc. The relay can operate correctly over a wide frequency range in order to accommodate power system frequency variations during disturbances.

This relay can sample the analog values from the traditional instrument transformers, or receive the sampled values from the electronic current and voltage transformers (via a merging unit). The binary inputs and outputs of this relay can be configured according to the demands of a practical engineering through the PRS IED Studio configuration tool auxiliary software, which can meet some special requirements of protection and control functions.

This relay can fully support the IEC61850 communication protocol and GOOSE function, and can completely meet the demands of a modern digitalized substation.

1.2 Product Function

Description	IEC 61850	IEC 60617	ANSI
	Protection		
Busbar differential protection	-	3ld/l	87B
Breaker failure protection	CC_RBRF	3I>BF	50BF
BC/BS Dead Zone Protection			50DZ
Feeder End-fault Protection			50FDZ
Feeder Breaker Failure Protection	CC_RBRF	3I>BF	50BF
Phase OverCurrent Protection	OC_PTOC	31>	50/51P
Ground OverCurrent Protection	EF_PIOC	IN>>	50/51G
Pole Discordance Protection	CCPDSC	PD	52PD
Supervision and monitoring			
Fuse failure supervision	SEQRFUF	FUSEF	60
Current circuit supervision	CCRDIF	MCS 3I	MCS 31

Table 1.2.1 Functions included in the IEDs

1.3 Product Features

• This device is based on a 32-bit high performance dual-core processor, internal high speed bus and intelligent I/O ports, and the hardware is in modularized design and can be configured flexibly, featuring interchangeability and easy extension and maintenance.

- Modularized hardware design makes this relay be easily upgraded or repaired by a qualified service person. Various function optional modules can satisfy various situations according to the different requirements of the users..
- The adoption of 16-bit A/D converter and the dual-channel sampling technology can ensure the accuracy and reliability of protection sampling and the correctness of protection operation. It also provides dedicated current transformers for metering, and ensures the high accuracy of telemetering with 48-point high speed sampling rate per cycle.
- This device can sample the analog values from the traditional instrument transformers, or receive the sampled values from the electronic transformers. It can support the protocol IEC60044-8, IEC61850-9-2 and GOOSE.
- Various algorithms for protection and measurement have been completed in this device for the feature of electronic transformer sampling, such as the error prevention method of multialgorithms data anomaly for the digital channels, to realize high accuracy and reliability under various conditions of network faults or communication interruption.
- This device has powerful GOOSE functions, and the connection and cooperation between some devices can be realized without using electrical cables, to facilitate the realization of such functions as simple bus differential protection, overload interlock shedding function and backup automatic transfer function etc.
- This device has fully realized the technology to integrate six functions into one device: protection, measurement, control, remote signaling, merging unit function and remote module functions, to improve the reliability.
- Various methods of GPS time synchronization are supported in this relay, including SNTP, pulse per second (PPS) and IRIG-B synchronization.
- The protection modules are completely separated from other modules, and are independent in both hardware and software. The protection functions do not depend on the communication network, so the failure of communication network will not affect the normal operation of the protection functions.
- Mature protection configuration, fast speed and high security performance can meet the practical requirements. Each protective element is independent, so it is very convenient for whether adopting the selected protective element.
- This device constantly measures and calculates a large amount of analog quantities, such as phase voltage, phase-to-phase voltage, neutral voltage, phase current, neutral current, active power, reactive power, power factor and frequency etc.
- The human machine interface (HMI) with a small control module (a 240×128-dot LCD, a 9-key keypad and 19 LED indicators) on the front panel is very friendly and convenient to the user.
- This device can communicate with a SAS or RTU via different communication intermediates: thernet network, RS-485 serial ports. The communication protocol of this device is optional: IEC61850, IEC60870-5-103, DNP3.0 or ModBus.

- This device can detect the tripping circuit of the circuit breaker and monitor the operation (close or trip) time of a circuit breaker by checking the auxiliary contacts of the circuit breaker.
- Complete event recording function is provided: 512 latest protection operation reports, 512 latest supervision records, 128 latest control operation records, 128 latest user operation records and 2000latest records of time tagged sequence of event (SOE) can be recorded.
- Powerful fault and disturbance recording function is supported: 64 latest fault or disturbance waves, the duration of a wave recording is configurable.

2 Technical Specifications

2.1 Electrical Specifications

2.1.1 Current Transformer Ratings

Reference		IEC 60255-1, IEC 60255-27
Rated frequency (fn)		50Hz, 60Hz
Nominal range		fn ± 5Hz
Rated current (In)		1/5A
	continuously	3×In
Thermal withstand capability	for 10s	20×In
	for 1s	100×In
Burden		< 0.05VA/phase @1A, < 0.2VA/phase @5A,

2.1.2 Voltage Transformer Ratings

Reference		IEC 60255-1, IEC 60255-27	
Rated frequency (fn)		50Hz, 60Hz	
Nominal range		fn ± 5Hz	
Rated voltage (Un)		100V ~ 120V (phase-to-phase voltage)	
	continuously	240V	
Thermal withstand capability	10s	360V	
	1s	400V	
Burden at rated voltage		< 0.03VA/phase @57.7V	

2.1.3 Auxiliary Power Supply

Reference	IEC 60255-1, IEC 60255-26
Rated voltage	24VDC~250VDC, 48V~250VAC
Variation	80% ~ 120%
Frequency	50/60Hz, ± 5Hz
Maximum interruption time in the	0%Un,100ms;
auxiliary DC voltage without resetting	40%Un,200ms;
the IED	70%Un,500ms
	At the Un=DC220V
Gradual shut down / Start up	Class C (60s shut down ramp, 5 min power off, 60s start up ramp)
Ripple in the DC auxiliary voltage	Class A (15% of rated @200Hz, 220VDC)
Maximum load of auxiliary voltage	\leqslant 30W (normal state),
supple	≪40W (maximum state)

2.1.4 Binary Input

Reference	IEC 60255-1, Clause:6.10.5	
Binary input number	Up to 90	
Rated voltage	24VDC~250VDC, 64VAC~250VAC	
Pickup voltage	55% ~ 70% rated voltage	

"ON" value voltage	70% ~ 120% rated voltage
"OFF" value voltage	< 55% rated voltage
Maximum permitted voltage	120% rated voltage
Resolution of binary input signal	≤ 1ms
Resolution of SOE	≤ 1ms

2.1.5 Binary Output

Reference	IEC 60255-1		
Item	Tripping output	Signal output	
Binary output number	Up to 70	Up to 35	
Output model	Potential-free contact	Potential-free contact	
Max system voltage	380Vac, 250Vdc	380Vac, 250Vdc	
Voltage across open contact	1000V RMS for 1min	1000V RMS for 1min	
	10A @ 380Vac;	5.0A @ 380Vac;	
Continuous carry	10A @ 250Vd	5.0A @ 250Vdc	
Short duration current	30A, 3s	30A, 1s	
	50A, 1s	50A, 15	
	1.00A @ 48Vdc, L/R=40ms		
	0.35A @ 110Vdc, L/R=40ms	0.60A @ 48Vdc, L/R=40ms	
Breaking capacity	0.30A @ 125Vdc, L/R=40ms	0.10A @ 110Vdc, L/R=40ms	
	0.20A @ 220Vdc, L/R=40ms	0.05A @ 220Vdc, L/R=40ms	
	0.15A @ 250Vdc, L/R=40ms		
Pickup time	< 5ms	< 10ms	
Dropout time	< 5ms	< 8ms	

2.2 Mechanical Specifications

Mounting Way	Flush mounted	
Weight per device	Approx. 20.0kg (fully equipped)	
Merchanical size	482.6mm*266 mm *217.7 mm	
(width×high×deepth)		
Hole size (width×high)	450 mm *267 mm	
Display language	Optional: Chinese, English	
Housing material	Metallic plates, parts and screws: Steel	
	Plastic parts: Polycarbonate	
Housing color	Silver grey	
Location of terminal	Rear panel of the device	
		Front side:IP40 (IP52 with seal strip)
Protection class	IEC60225-1: 2009	Rear side, connection terminals: IP20
		Other Sides: IP40

2.3 Ambient Temperature and Humidity Range

Standard IEC 60255-1:2009	Standard	IEC 60255-1:2009
---------------------------	----------	------------------

Operating temperature range	-40°C ~ +70°C	
Transport and storage temperature	-40°C ~ +70°C	
range		
Damp heat steady	+40°C 93%humidity 16h	
Damp-heat test, cyclic	6 cycles, +25 $^\circ\!\!\!\mathrm{C}$ to +55 $^\circ\!\!\!\mathrm{C}$, Humidity 97% to 93%	

2.4 Communication Interfaces

2.4.1 Ethernet Port

For Station Level			
Med	ium		Parameters
		Port number	3
		Connector type	RJ-45
		Transmission rate	100Mbits/s
	Electrical	Transmission standard	100Base-TX
		Transmission distance	≤ 100m
		Protocol	IEC60870-5-103:1997, IEC61850 etc.
Ethernet:		Safety level	Isolation to ELV level
Electrical OR		Port number	3
Optical	Optical Optical	Connector type	LC
		Transmission rate	100Mbits/s
		Transmission standard	100Base-FX
		Optical fiber type	Multi-mode
		Wavelength	1310nm
		Transmission distance	≤ 2000m
		Protocol	IEC60870-5-103:1997, IEC61850 etc.
		For Process Level (If re	qired)
Med	ium		Parameters
		Port number	4
		Connector type	LC
		Transmission rate	100Mbits/s
Opti	ical	Transmission standard	100Base-FX
		Optical fiber type	Multi-mode
		Wavelength	1310nm
		Transmission distance	≤ 2000m

2.4.2 Serial Port

Medium		Parameters
	Port number	2
RS-485 (EIA)	Baud rate	4800 ~ 115200bps
	Transmission distance	≤ 500m @ 4800bps
	Maximal capacity	32
	Protocol	IEC60870-5-103:1997, DNP3.0 etc.

Safety level	Isolation to ELV level

2.4.3 Time Synchronization

Medium		Parameters
RS-485 (EIA)	Port number	1
	Transmission distance	≤ 500m
	Maximal capacity	32
	Timing standard	IRIG-B
	Safety level	Isolation to ELV level
	Port number	1
	Connector type	ST
Optical Ethernet	Transmission distance	≤ 2000m
	Timing standard	IRIG-B

2.4.4 Ethernet Port for Debugging

Medium	Parameters	
	Port number	1
	Connector type	RJ-45
Electrical Ethernet	Transmission rate	100Mbits/s
(in front panel)	Transmission standard	100Base-TX
	Transmission distance	≤ 100m
	Safety level	Isolation to ELV level

2.5 Type Tests

2.5.1 Environmental Tests

Dry heat operation test	IEC 60068-2-2, IEC 60255- 27	16h, +70℃
Cold operation test	IEC 60068-2-1, IEC 60255- 27	16h, -40 ℃
Dry heat storage test	IEC 60068-2-2, IEC 60255- 27	16h , +70℃
Cold storage test	IEC 60068-2-1, IEC 60255- 27	16h , -40℃
	IEC 60255-	
Damp heat steady state test	27,Clause10.5.1.5	
+Verifcation of function &	IEC 60255-1,Clause	+40°C 93%humidity
dielectric (10 days)	6.12.3.6	
	IEC 60068-2-78	
Dama haattaat avalia	IEC 60068-2-30, IEC	6 cycles, +25 $^\circ\!\!\!\mathrm{C}$ to +40 $^\circ\!\!\!\mathrm{C}$, Humidity 97% to
Damp-heat test, cyclic	60255-27	93%
Change of temperature test	IEC 60068-2-14	5 Cycles , 1℃/min, -40℃ to +70℃

2.5.2 Mechanical Tests

Vibration response test	IEC 60255-21-1, IEC 60255-27	Class 1: Vibration Response: Class 1 (10-59Hz: 0.035mm, 59-150Hz: 0.5gn)
Vibration Endurance:	IEC 60255-21-1, IEC 60255-27	Class 1 (10-150Hz: 1gn)
Shock Response	IEC 60255-21-2, IEC 60255-27	Class 1 (5gn)
Shock Withstands	IEC 60255-21-2, IEC 60255-27	Class 1 (15gn)
Bump	IEC 60255-21-2, IEC 60255-27	Class 1(10gn)
Seismic +Verifcation of function	IEC 60255-21-3 IEC 60255-1, Clause 6.13.3	Class I

2.5.3 Electrical Tests

Impulse Voltage Tests.	IEC 60255-27	Impulse test: 5kV (rated insulation voltage \leq 63V);Impulse test: 1kV (rated insulation voltage $>$ 63V);
AC or DC Dielectric Test	IEC 60255-27	dielectric 50,60Hz 5/60s DC 2.8KV AC 2KV
Insulation Resistance	IEC 60255-27	>100Mohm @500Vdc
Protective Bonding Resistance	IEC 60255-27	Test current DC20A, >12 Vac /Vdc, >60s,< 0.1 ohm

2.5.4 Electromagnetic Compatibility

Burst Disturbance Test / Damped Oscillatory Wave Immunity Test	IEC 60255-26, IEC 61000- 4-18	For Power Supply, Binary Input / Output:Common Mode: 2.5kV, Differential Mode: 1kV;For Communication Port:Common Mode: 1kV
Electrostatic Discharge test	IEC 60255-26, IEC 61000- 4-2	Contact Discharge: 8kV, Air Discharge: 15kV
Fast Transient test	IEC 60255-26, IEC 61000- 4-4	(Power / Earth Port: 4kV, Signal / Control Port: 2kV)

Surge Immunity Test	IEC 60255-26, IEC 61000- 4-5	For Power Supply, Binary Input / Output: L-E: 4kV, L-L: 2kV, voltage waveform: 1.2/50µs, current waveform: 8/20µs; Communication Port: L-E: 1kV, L-L: -, voltage waveform: 1.2/50µs, current waveform: 8/20µs)
Conducted radio interference test	IEC 60255-26, IEC 61000- 4-6	150kHz~80MHz(Uo: 140dΒ μV or Uo: 10V)
Electromagnetic fields immunity	IEC 60255-26, IEC 61000- 4-3	Test Field Strength: 10V/m , Sweep frequency: 80MHz - 1000MHz, Spot frequency: 80MHz, 160MHz, 450MHz, 900MHz @ 80% Modulation & Pulse
immunity to conduct, common mode disturbance in frequency range 0 Hz to 150KHz	61000-4-16	Level 4: continuous 30V,short duration 300V at 50/3,50,60Hz; 15Hz~150Hz:30-3 decreases at 20dB/decade; 150Hz~1.5kHz:3 constant; 1.5kHz~15kHz:3-30 increases at 20dB/decade; 15kHz~150kHz:30 constant
Power frequency magnetic fields	IEC 61000-4-8, IEC 60255- 26	Continuous: 100A/m, Short Duration 1s to 3s: 1000A/m)
Pulse magnetic field immunity test	IEC 61000-4-9	Class 5: Current 6.4/16µs, 1000A/m
Damped oscillatory magnetic field immunity test	IEC 61000-4-10	Class 5: 0.1MHz&1MHz, 100A/m
Power frequency immunity tests	IEC 60255-26	Input: Class A,Common Mode: 300V, Differential Mode: 150V
Ring wave immunity test	IEC 61000-4-12	Ring Wave Class 4,4kV
Conducted RF interference on power supply terminals	IEC 60255-26, CISPR 22	Conducted Emission Limit for Auxiliary Power Supply Port : Frequency range: 0.15MHz – 0.5MHz (Quasi Peak: 79µV, Avg: 66µV), Frequency range: 0.5MHz – 30MHz (Quasi Peak: 73µV, Avg: 60µV);

Radiated interference	IEC 60255-26, CISPR 22	Radiated Emission Limit on Enclosure Port : Frequency range: 30MHz - 230MHz (Quasi Peak: 40µV), Frequency range: 230MHz - 1000MHz (Quasi Peak: 47µV)
-----------------------	------------------------	---

2.6 Terminals

Connection Type	Wire Size
CT and VT circuit connectiors	Screw terminals,4mm ² lead
Binary I/O connection system	Screw terminals, 2.5mm ² lead

2.7 Measurement Range and Accuracy

Metering Item	Range	Accuracy
Phase range	0° ~ 360°	≤ 0.5% or ±1°
Frequency	35.00Hz ~ 70.00Hz	≤ 0.01Hz
Current		\pm 1.0%ln, 0.05ln~1.00ln
(three phase 3lp)	0.05ln <l<4.00ln< td=""><td>\pm1.0%I, 1.00In~4.00In</td></l<4.00ln<>	\pm 1.0%I, 1.00In~4.00In
Voltage		±0.5%Un, 0.05Un~1.00Un;
(Phase 3Up, Phase-to-Phase 3Upp)	0.05Un <u<1.50un< td=""><td>\pm0.5%U, 1.00Un~1.50Un</td></u<1.50un<>	\pm 0.5%U, 1.00Un~1.50Un

2.8 Protection Function Features

2.8.1 Busbar Differential Protection

Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Accuracy of voltage setting	≤ 2.5% Setting or 0.02Un, whichever is greater
Operation time	≤20ms (Id>2.00×Setting)

2.8.2 BC/BS Breaker Failure Protection

Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Dropout time	≤ 35ms
Tolerance of time setting	≤ 1% Setting + 40ms

2.8.3 Feeder End-fault Protection

Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Dropout time	≤ 30ms
Tolerance of time setting	≤ 1% Setting + 40ms

2.8.4 Feeder Breaker Failure Protection

Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Accuracy of voltage setting	≤ 2.5% Setting or 0.02Un, whichever is greater

Dropout time	≤ 35ms
Tolerance of time setting	≤ 1% Setting + 40ms

2.8.5 Phase Overcurrent Protection

Pickup current	1.00×Setting
Dropout current	0.98×Setting
Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Dropout time	≤ 35ms
Tolerance of time setting (Definite-time characteristic)	≤1%×Setting+30ms (at 2 times current setting)
Tolerance of time setting (Inverse-time characteristic)	2.5% of operating time or 30ms, whichever is greater
	(Start value multiples in range of 1.220 when I>In)
	5% of operating time or 40ms, whichever is greater
	(Start value multiples in range of 220 when I≤In).

2.8.6 Ground Overcurrent protection

Pickup current	1.00×Setting
Dropout current	0.98×Setting
Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Dropout time	≤ 35ms
Tolerance of time setting (Definite-time characteristic)	≤1%×Setting+30ms (at 2 times current setting)
	5% of operating time or 40ms, whichever is greater
Tolerance of time setting (Inverse-time characteristic)	(Start value multiples in range of 1.220)

2.8.7 Pole Discordance Protection

Tolerance of current setting	≤ 2.5% Setting or 0.02In, whichever is greater
Dropout time	≤ 35ms
Tolerance of time setting	≤ 1% Setting + 40ms

3 Protection Functions

3.1 Overview

The BP-2C relay is a microprocessor based relay which can provide mature protection for various primary equipments (generally all types of transformers etc.). The following sections detail the individual protection functions of this relay.

Category	Profession Vocabulary	Abbreviation
	Time	Т
	Phase	Ph
	Direction	Dir
	Overcurrent	OC
	Curve	Curve
	Temperature	Temp
	Characteristic	Char
	Polarity	Pol
	Quantity	Qua
	Factor	Factor
	Current	Cur
	Residual Current	ResCur
	Negative Current	NegCur
	Positive Current	PosCur
	Voltage	Vol
Floatricity	Residual Voltage	ResVol
Electricity	Negative Voltage	NegVol
	Positive Voltage	PosVol
	High Voltage	HigVol
	Low Voltage	LowVol
	thermal	Therm
	Overload	OL
	Negative	Neg
	Sequence	Seq
	Residual	Res
	Beta	Beta
	harmonic	Harm
	Power	Pow
	Earth-fault	EF
	Failure	Fail
	Impedence	Imp
	Reactance	React

The golssary will be listed in the below form.

Category	Profession Vocabulary	Abbreviation
	Induction	Induct
	Positive	Posi
	Block	Blk
	Enable	Ena
	Operation	Ор
	Trip	Tr
	Protection	Prot
	Mode	Mod
	Forward	Fwd
	Reverse	Rev
	Constant	Const
	External	Ex
	Internal	In
	Number	Num
	Selector	Sel
	Measurement	Meas
	Parameter	Para
	Multiplier	Mult
	Minimum	Min
	Alarm	Alm
	Reclose	Recls
Operation	Counter	Counter
Operation	Correction	Correction
	Available	Avai
	Initial	Init
	Reference	Ref
	Normal	Norm
	Restraint	Restr
	Slope	Slope
	deblock	Deblk
	Winding	Wnd
	Elimination	Elim
	Nominal	Nom
	Connection	Connection
	Hysteresis	Hyst
	Compensation	Comp
	Check	Chk
	Synchronize	Syn
	Synchronization	Syn
	Energize	Energ
	Weigh	Weig
	Activation / Activate	Activ

Category	Profession Vocabulary	Abbreviation
	Error	Err
	Configuration	Cfg
	Parameter	Para
	Management	Mana
	Interrupt	Intr
	SelfCheck	SelfChk
	Start	Str
	Generator	Gen
	Motor	Motor
	Rotor	Rotor
	Stator	Stator
	Busbar	Bus
	Transformer	TF
Apparatus	Transmission Line	TL
	Line	Line
	Capacitor	Сар
	Reactor	Reac
	Resistor	Resis
	Switch	Sw
	Component	Comp

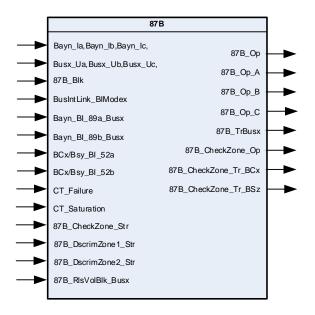
3.2 Busbar Differential Protection 87B

3.2.1 Overview

In these days, electrical power supply system stability is more important task because it deals with huge-quantity of electrical power. Therefore, any kind of malfunction in busbar sections can cause huge amount of power loss. For the point of view of this important engineering aspect, the design of busbar protection is as sensitive as possible.

Busbar differential protection 87B is main and core sub-protection function of BP-2C and it covers all protection zones of the whole busbar. 87B protection is to ensure the accurate, stable and healthy operation of busbarin supply system. The operating characteristics of busbar differential protection 87B that are maximum match to the any condition of busbar protection are:

- Highly approved Supervision calculation criteria, including:
 - \circ $\;$ Arithmetic sum Delta overall current calculation criteria
 - \circ Vectorial sum Differential current threshold calculation criteria.
- Complex percentage deifferantial element define inner zone or out of zone fault based on calculated restrain current.
- Voltage Block Element to prevent the mal-operation



- Accurate CT saturation detection criteria
- Easily to implement with different type of busbar circuit.

NOTICE!

Busbar differential protection 87B is also have blocking capability, In case of fault, if busbar voltage criteria of faulty section is not satisfied.

3.2.1.1 Function Block

3.2.1.2 Signals

Table 3.2.1 87B Input Signals

NO.	Signal	Description
1	87B_CheckZone_Str	This signal indicating that check zone element picks up
2	87B_DscrimZone1_Str	This signal indicating that discriminative zone1 element picks up
3	87B_DscrimZone2_Str	This signal indicating that discriminative zone2 element picks up
4	CT_Failure	This signal indicating that CT is failure, it is used to block busbar differential protection.
5	CT_Saturation	This signal indicating that CT is saturation
6	87B_VBE_Rls_Busx	This flag indicating that 87B_VBE of busbar x is released.
7	87B_Blk	Binary input for blocking 87B function.
8	BusIntLink_BIModex	This signal indicating that two busbars are under theinter- connectedoperation mode.
9	Bayn_BI_89a_busx	Normally open auxiliary contact of bus x disconnector of bay n.

NO.	Signal	Description
10	Bayn_BI_89b_busx	Normally closed auxiliary contact of bus x disconnector of bay n. It is used if disconnector dual-position auxiliary contacts are adopted.
11	BCx/Bsy_BI_52a	Normally open auxiliary contact of circuit breaker of bus coupler n or bus section y. It is used if breaker dual-position auxiliary contacts are adopted
12	BCx/Bsy_BI_52b	Normally closed auxiliary contact of circuit breaker of bus coupler n or bus section y.

Table 3.2.2 87B Output Signals

NO.	Signal	Description
1	87B_Op	Busbar differential protection operates to trip any busbar.
2	87B_Op_A	Phase-A Busbar differential protection operates to trip any busbar .
3	87B_Op_B	Phase-B Busbar differential protection operates to trip any busbar .
4	87B_Op_c	Phase-C Busbar differential protection operates to trip any busbar .
4	87B_TrBusx	Busbar differential protection operates to trip busbar x.
5	87B_CheckZone_Op	Check zone operates.
6	87B_CheckZone_Tr_BCx	Check zone operates to trip BCx
7	87B_CheckZone_Tr_BSz	Check zone operates to trip BSz

3.2.2 Protection Principle

3.2.2.1 Supervision Element

BP-2C provides independent supervision element for 87B, if one of the following two conditions is fulfilled, supervision element of 87B picks up.

1. DeltaOverallCurrent Criterion

The overall current which is the arithmetic sum of the magnitudes of each current, When any one phase of the delta overall current is larger than the threshold, the supervision element of this phase picks up. Its expressed as follow.

Overall current:

$$\boldsymbol{I}_{r} = \sum\limits_{j=1}^{m} \mid \boldsymbol{I}_{j} \mid$$

The operating criterion:

$$\Delta i_r > \Delta I_{dset}$$

Where:

 I_{j} : The current of bay j which connected to busbar.

 Δi_r : Delta overall current which means the sudden changequantity of overall current during one cycle.

 ΔI_{dset} : The delta overall currentthreshold, its fixed as 0.5In,In is the rated secondary current of

CT.

2. Differential Current Threshold-crossing Criterion

Differential currentwhich is the vectorialsum of the magnitudes of each current.When any one phase of differential current is larger than the differential current setting 87B_Cur_Str,the supervision element of this phase picks up. Its expressed as follow.

Differentialcurrent:

$$\boldsymbol{I}_{d}=\mid \underset{j=1}{\overset{m}{\sum}}\boldsymbol{I}_{j}\mid$$

The operating criterion:

$$I_d > 87B_Cur_Str$$

Where:

 I_{j} : The phase current of bay j which connected to busbar.

 I_d :Differential phase current of check zone.

87B_Cur_Str :Current setting of busbar differential protection

When any one phase of differential current is lower than current setting ^{87B}_Cur_Str ,and the corresponding phase currents of each bay are lower than 1.5In, the supervision element of this phase returns. The supervision element will last for 40ms after corresponding supervision element return. Its expressed as follow.

$$\left| I_{d} < Kf \times 87B Cur Str \right|$$

 $I_{j} < 1.5ln(j = 1,2...m)$

Where:

- I_d :Differential phase current of check zone.
- Kf: The dropout current ratio.
- 87B_Cur_Str :Current setting of busbar differential protection
- \mathbf{I}_{r} :Overall current of check zone or discriminating zone.
- $\boldsymbol{I}_{\!n}\!:\!The$ rated secondary current of CT.

3.2.2.2 Complex Percentage Differential Element

Compared with the traditional percentage restrain criterion, the complex percentage differential criterion is added with differential current in calculation of restrain current, which providing it with a strong restrain characteristic when it is faulty outside of the protection zone and providing no restrain when it is faulty inside of the protection zone.

The operating criteria of complex ratio differential are described as follow:

$$\begin{cases} I_{d} > 87B_Cur_Str \\ \\ I_{d} > K_{r} \times (I_{r} - I_{d}) \end{cases}$$

Where:

- I_d :Differential phase current of check zone or discriminating zone.
- 87B_Cur_Str :Current setting of busbar differential protection
- $\mathbf{I}_{\mathbf{r}}$:Overall current of check zone or discriminating zone.
- K_r:Setting of complex percentage restraint coefficient .

The operating characteristic of complex percentage differential element is shown in figure below.

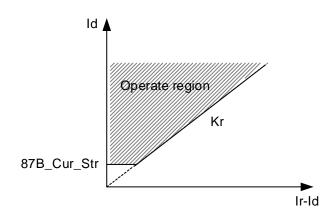


Figure 3.2.1 Operating characteristic of complex percentage differential element

The K_r of complex percentage differential elementis recommended as 0.43. Take into consideration the sensitivity of check zone differential element for a fault occurred in the weak source busbar zone when the BC breaker is open, the protection algorithm can dynamically adjust the restraint coefficient according to the result of the supervision element.

3.2.3 Differential circuits

The differential circuit include check zone differential circuit and discriminating zone differential circuit. The check zone differential element is used to distinguish whether the fault occurs outside or within the overall busbar system, and the discriminating zone differential elements are used to select faulty zone

The polarity mark of CB(circuit breaker) CT is on the busbar side, and the polarity mark of BC(bus coupler) CT is on busbar 2 side. The polarity mark definition of usual busbar system arrangements are shown in figure below.

3.2.3.1 Single Busbar

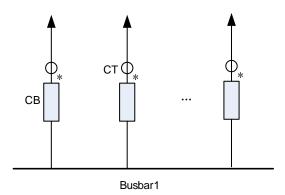


Figure 3.2.2 Single busbar arrangement

The single busbar arrangement is shown in Figure 3.2.2.Check zonedifferential circuit is constituted by currents of all circuits connected to busbar 1,and discriminative zone has the same differential circuit as Check zone.

Differential current is calculated as follow.

$$\mathbf{I}_{d} = \mathbf{I}_{1} + \mathbf{I}_{2} + \ldots + \mathbf{I}_{n}$$

Where:

 $I_1, I_2...I_n$:The current of each bay connected to busbar1.

3.2.3.2 Single Busbarwith One BS(Bus Section)

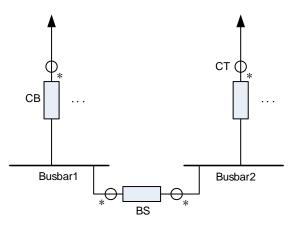


Figure 3.2.3 Single busbar with one BS arrangement

The single busbar with one BS arrangement is shown in Figure 3.2.3.Check zone differential circuit is constituted by currents of all circuits connected to busbar1 and busbar2 except BS.The discriminative zone differential circuit is constituted by currents of all circuits connected to individual zone (busbar 1 or busbar 2) which separated by BS.

For the BC/BS that double CTs are available, the two CTs should be cross-connected to the discriminating zone differential circuit of the two busbars that connected to the BC/BS.

Differential current is calculated as follow.

Check zone: $I_{d} = I_{1} + I_{2} + ... + I_{n}$

For Single CT arrangement:

Dscriminative zone1: $I_{d1} = \sum_{i=4}^{n} (I_i \times S_{1i}) - I_{BS} \times S_{BS}$

Dscriminative zone2: $I_{d2} = \sum_{i=4}^{n} (I_i \times S_{2i}) + I_{BS} \times S_{BS}$

For Double CT arrangement:

Dscriminative zone1: $I_{d1} = \sum_{i=4}^{n} (I_i \times S_{1i}) - I_{BSCT2} \times S_{BS}$

Protection Functions

CYG

Dscriminative zone2: $I_{d2} = \sum_{i=4}^{n} (I_i \times S_{2i}) - I_{BSCT1} \times S_{BS}$

Where:

- I_{BS} :The current of BS.
- I_{BSCT1}:The BS current of CT side busbar 1.
- $I_{\mbox{\tiny BSCT2}}$: The BS current of CT side busbar 2.
- $I_1, I_2...I_n$: The current of each bay connected to busbar1 and busbar2 except BS current.

 ${\rm S}_{\rm BS}$:Signal "1"indicates that BS is in closed position, "0"indicates it is open .

 S_{ii} :Signal "1" indicates that bay i is connected to busbar1.

 S_{2i} :Signal "1" indicates that bay i is connected to busbar2.

3.2.3.3 Double Busbar with One BC(Bus Coupler)

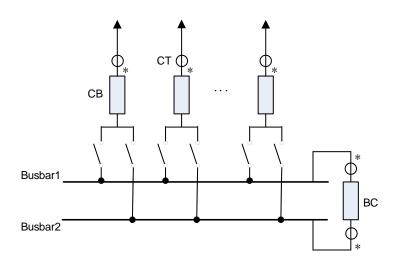


Figure 3.2.4 Double busbar with One BC arrangement

The double busbar with one BC arrangement is shown in Figure 3.2.4. Check zone differential circuit is constituted by currents of the circuits connected to busbar1 and busbar2 except BC. The discriminative zone differential circuit is constituted by currents of all circuits connected to individual zone (busbar 1 or busbar 2) which separated by BC.

For the BC/BS that double CTs are available, the two CTs should be cross-connected to the discriminating zone differential circuit of the two busbars that connected to the BC/BS.

Differential current is calculated as follow.

Check zone: $\mathbf{I}_{d} = \mathbf{I}_{1} + \mathbf{I}_{2} + \ldots + \mathbf{I}_{n}$

For Single CT arrangement:

Dscriminative zone1: $I_{d1} = \sum_{i=4}^{m} (I_i \times S_{1i}) - I_{BC} \times S_{BC}$

Dscriminative zone2: $\textbf{I}_{d2} = \sum\limits_{i=4}^{m} (\textbf{I}_i \times \textbf{S}_{2i}) + \textbf{I}_{\text{BC}} \times \textbf{S}_{\text{BC}}$

For Double CT arrangement:

Dscriminative zone1: $I_{d1} = \sum\limits_{i=4}^{m} (I_i \times S_{1i}) - I_{\text{BCCT2}} \times S_{\text{BC}}$

Dscriminative zone2: $\textbf{I}_{_{d2}} = \sum\limits_{_{i=4}}^{^{m}} (\textbf{I}_{_i} \times \textbf{S}_{_{2i}}) - \textbf{I}_{_{BCCT1}} \times \textbf{S}_{_{BC}}$

Where:

 I_{BC} :The current of BC.

I_{BCCT1}:The BC current of CT side busbar 1.

 I_{BCCT2} : The BC current of CT side busbar 2.

 $I_1, I_2...I_n$: The current of each bay connected to busbar1 and busbar2 except BC current.

 $S_{\scriptscriptstyle BC}$:Signal "1"indicates that BC is in closed position, "0"indicates it is open .

 S_{ii} :Signal "1"indicates that the disconnector of bay i connected to busbar1 is in closed position, "0"indicates it is open.

 S_{2i} :Signal "1"indicates that the disconnector of bay i connected to busbar 2 is in closed position;"0"indicates it is open.

3.2.3.4 Double Busbar with Two BC and One BS

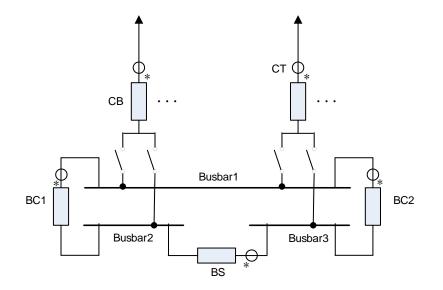


Figure 3.2.5 Double busbar with two BC and two BS arrangement

The double busbar with two BC and oneBS arrangement is shown in Figure 3.2.5.Check zone differential circuit is constituted by currents of all circuits connected to busbar1, busbar2 and busbar3 except BC1,BC2 and BS.The discriminative zone differential circuit is constituted by currents of all circuits connected to individual zone(busbar1,busbar2 or busbar3) which separated by BC1,BC2 and BS.

Differential current is calculated as follow.

Check zone: $I_d = I_1 + I_2 + \ldots + I_n$

 $\text{Dscriminative zone1:} I_{\text{d1}} = \mathop{\scriptstyle \sum}_{i=4}^{m} (I_i \times S_{1i}) - I_{\text{BC1}} \times S_{\text{BC1}} - I_{\text{BC2}} \times S_{\text{BC2}}$

 $\text{Dscriminative zone2:} \textbf{I}_{\text{d2}} = \underset{i=4}{\overset{\text{m}}{\sum}} (\textbf{I}_i \times \textbf{S}_{2i}) + \textbf{I}_{\text{BC1}} \times \textbf{S}_{\text{BC1}} + \textbf{I}_{\text{BS}} \times \textbf{S}_{\text{BS}}$

 $\text{Dscriminative zone2:} I_{\text{d3}} = \sum_{i=4}^{m} (I_i \times S_{3i}) + I_{\text{BC2}} \times S_{\text{BC2}} - I_{\text{BS}} \times S_{\text{BS}}$

Where:

 I_{BC1}, I_{BC2}, I_{BS} :The current of BC1, BC2, BS.

 $l_1, l_2...l_n$: The current of each bay connected to busbar1, busbar2 and busbar3 except l_{BC1}, l_{BC2}, l_{BS} .

 S_{BC1} :Signal "1" indicates that BC1 is in closed position, "0" indicates itsopen .

 S_{BC2} :Signal "1"indicates that BC2 is in closed position, "0"indicates itsopen .

 $S_{\scriptscriptstyle BS}$:Signal "1"indicates that BS is in closed position, "0"indicates itsopen .

 S_{ii} :Signal "1"indicates that the disconnector of bay i connected to busbar1 is in closed position, "0"indicates itsopen .

 S_{2i} :Signal "1"indicates that the disconnector of bay i connected to busbar 2 is in closed position; "0"indicates itsopen .

 S_{3i} :Signal "1"indicates that the disconnector of bay i connected to busbar 3 is in closed position; "0"indicates itsin open position.

3.2.3.5 Double Busbar with Two BC and TwoBS

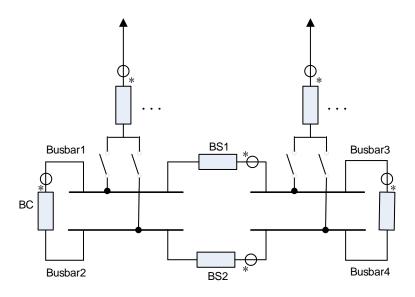


Figure 3.2.6 Double busbar with two BC and one BS arrangement

The double busbar with two BC and twoBS arrangement is shown in Figure 3.2.6.We usually use two IEDs to provide protection for this system arrangements becuase of more bays.One IED protect left region of the busbar(busbar 1,busbar 2), and the other protect right region(busbar 3, busbar 4). The protected area of two IEDs overlaps in the breaker section(BS1,BS2).For the occasion of this arrangement,the BS current will be included in check zone differential element.

3.2.4 Voltage Block Element 87B_VBE

Voltage block element is used as a blocking condition of 87B. If the fault voltage doesn't fulfills the voltage criteria , the 87B will be blocked.

The releasing criteria of 87B_VBE are:

 $\begin{cases} U_{p} \leq 87B_Vol_Blk\\ 3U_{0} \geq 87B_Re\,sVol_Blk\\ U_{2} \geq 87B_NegVol_Blk \end{cases}$

Where:

 U_p : The phase-to-earth voltages of the busbar.

 $3U_0$: Residual voltage of the busbar(calculated internally).

 U_2 :Negative voltage of the busbar(calculated internally).

87B_Vol_Blk: Phase voltage setting of 87B_VBE.

87B_ResVol_Blk: Residual voltage setting of 87B_VBE.

87B_NegVol_Blk: Negative voltage setting of 87B_VBE.

When the protective device is applied to an unearthed system, the system setting UnearthedSys_Mod is set as "1", the criteria of 87b_VBE will be changed.

$$\begin{cases} U_{pp} \leq \sqrt{3} \times 87B \text{ Vol}Blk \\\\ U_2 \geq 87B \text{ NegVol}Blk \end{cases}$$

Where:

U_{pp}: Phase-to-phase voltage.

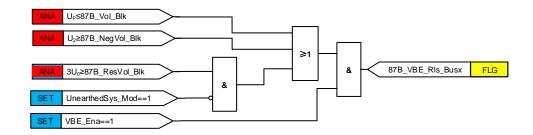
U₂: Negative sequence voltage.

87B_Vol_Blk: Phase-to-earth voltage setting of 87B_VBE.

87B_NegVol_Blk: Negative voltage setting of 87B_VBE.

3.2.5 Detection of CT Saturation

In order to prevent the misoperation caused by severe CT saturation during a external fault occurred in djacent region, the protection is provided with CT saturation detection element to check if differential current is caused by external fault.


The saturation detection element is based on CT saturation generation mechanism and characteristic of secondary current waveform after CT saturation. In case of busbar fault occurs,

 ΔI_d element will operate almost at the same time with ΔI_r element, whereas for external fault, the ΔI_d element will not operate before CT saturation at the fault incipient stage, it will only operate after

 Δl_r element in case CT is saturated. And although differential current waveform is distorted during CT saturation, each cycle has a linear transfer region, and there are richharmonic in the transient saturation waveform, which can accurately detect the time of CT saturation occurrs and adjust the protection algorithm in real-time, thus blocking busbar differential protection to prevent maloperation if the differential current is determined to be caused by CT saturation.

3.2.6 Logic

The logic of Voltage Block Element is shown as follows:

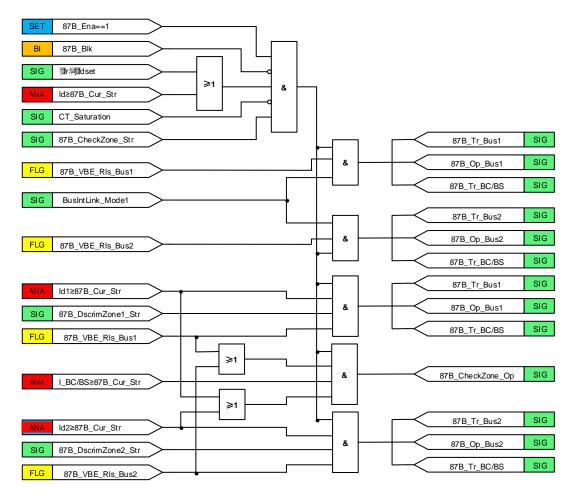


Figure 3.2.8 Logic Block Diagram of 87B

3.2.7 Settings

Name	Values (Range)	Unit	Step	Default	Description
BusIntLink_EnMode1	0,1	-	1	0	Enabling or disabling inter-linked operaton mode.
BC\BS_MaintenanceMode	0,1	-	1	0	Enabling or disabling circuit breaker maintenance mode of bus couplers or section.
UnearthedSys_Mod	0,1	-	1	0	0: Earthed system; 1: Unearthed system.
VBE_Ena	0,1	-	1	0	Enabling or disabling 87B/50BF_VBE
DS_DualPosition	0,1	-	1	0	Enabling or disabling dual-position for disconnector status.
BC_DualPosition	0,1	-	1	0	Enabling or disabling dual-position for bus couplers or bus sections status.

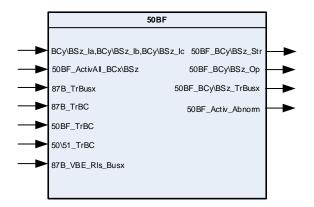
Table 3.2.3 Pubilc Settings

Table 3.2.4 87B Settings

Name	Values (Range)	Unit	Step	Default	Description
87B_Cur_Str	0.05ln~20ln	А	0.01A	20In	Current setting of 87B
87B_Slope_Kr	0.20~0.80	-	0.01	0.43	Setting of 87B complex percentage restraint coefficient. 0.43 is recommended.
87B_Vol_Blk	0~100	V	0.01V	40	Under voltage setting of 87B_VBE
87B_ResVol_Blk	0~70	V	0.01V	6	Residual voltage setting of 87B_VBE
87B_NegVol_Blk	0~70	V	0.01V	4	Negative-sequence voltage setting of 87B_VBE
87B_Ena	0,1	-	1	0	Enabling or disabling 87B

3.3 BC/BS Breaker Failure Protection 50BF

3.3.1 Overview


The main and important function of BC/BS Breaker Failure Protection 50BF is to provide backup tripping in case of when the circuit breaker of BC/BS is failed to operate. For the economic and engineering point of view, the BC/BS protection is very important for electric power supply system because harm situations initiate many damages.

The BC/BS CB acted as inter-connection switch between two or more busbars. The BC/BS Breaker Failure Protection 50BF continuously monitored the respective busbar section/ bus coupler circuit breaker tripping contact position. 50BF provide backup support of protection and save the power supply system, In case that thebreaks don't opentafter time delay of CB operation fail. Operation

characteristics of BC/BS Breaker Failure Protection 50BF are:

- Supervision element based on different supplementary points
- Current detection element

3.3.1.1 Function Block

3.3.1.2 Signals

Table 3.3.1 BC/BS 50BF Input Signals

NO.	Signal	Description
1	50BF_ActivAll_BC\BS	50BF three-Phase binary input of BC\BS.
2	87B_TrBusx	87B operates to trip BC/BS
3	50BF_TrBC	50BF operate to trip BC/BS
4	50/51_TrBC	50\51 operate to trip BC/BS
5	87B_TrBC	CheckZone operate to trip BC/BS
6	87B_VBE_Rls_Busx	This flag indicating that 87B_VBE of busbar x is released.

Table 3.3.2 BC/BS 50BF Output Signals

NO.	Signal	Description
1	50BF_BCy\BSz_Str	The breaker failure protection of BCy\BSz start.
2	50BF_BCy\BSz_Op	The breaker failure protection operates.
3	50BF_BCy\BSz_TrBusx	The breaker failure function operates to trip busbar x.
4	50BF_BCy\BSz_Activ_Abnorm	Alarm signal indicating that BI for 50BF of BCy\BSz is energized for over 20s. it is used to invalidate the binary input BI for 50BF of BCy\BSz.

3.3.2 Protection Principle

BC/BS breaker failure protection 50BF is only applied to the BC/BS breaker which is acted as a inter-connection switch. When the protection sends a tripping command to the BC/BS breaker, while the breaker is failed to open ,the 50BF will issue a back-up trip command to adjacent circuit

breakers of two busbars, which connected to the fualty BC/BSafter time delay of 50BF_BC\BS_TrBus_T.

3.3.2.1 Supervision Element

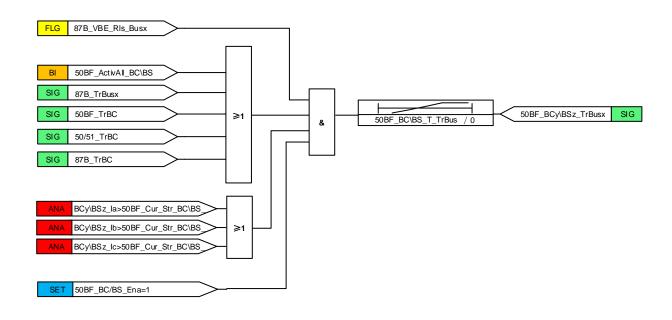
BP-2C provides independent supervision element for 50BF of BC\BS, if one of the following five conditions is fulfilled, supervision element for 50BF of BC\BS picks up.

- 1. Breaker failure initiating binary input (three-phase tripping contact) of BC\BSis energized.
- 2. 87B operates to trip BC/BS.
- 3. CheckZone operates to trip BC/BS.
- 4. 50BF operates to trip BC/BS.
- 5. 50\51 operates to trip BC/BS.

3.3.2.2 Current Detection Element

Any one of the three phase current is greater than the setting 50BF_Cur_Str_BC\BS, the current detection element picks up.

3.3.2.3 Binary Input


Three-phase tripping contact:

50BF_ActivAll_BC\BS: Three-Phase breaker failure initiating binary input of BC\BS.

When the supervision element detects long-time (fixed as 20s) duration of the binary input, it will output an alarm signal 50BF_BCy\BSz_Activ_Abnorm, and mask the binary input channel.

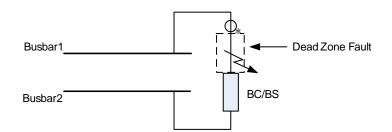
3.3.3 Logic

The logic of 50BF of BC\BS is shown as follows:

3.3.4 Settings

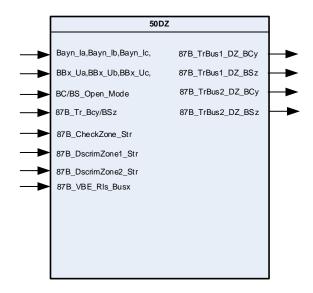
Table 3.3.3 BC/BS 50BF Settings

Name	Values (Range)	Unit	Step	Default	Description
50BF_Cur_Str_BC\BS	0.05ln~20ln	А	0.01A	20In	Phase current setting of 50BF of BC\BS
50BF_TrBus_T_BC\BS	0.000~10.000	s	0.001s	10	Time delay of 50BFof BC\BS operating to trip busbar
50BF_ BC\BS_Ena	0,1	-	1	0	Enabling or disabling 50BF function of bus couplers or bus sections.


3.4 BC/BS Dead Zone Protection 50DZ

3.4.1 Overview

The fault between the current measuring circuit CT and circuit breaker is known as BC/BS dead zone (fault figure 3.3.1 shows the structural detail). in this kind of fault situation, the large fault current will not decrease even though the busbar zone connected with the BC/BS breaker operate, which cause a severe damage to the electricity system. BC/BS dead zone protection 50DZ can immediately detect the dead zone fault and trip the respective busbar circuit breaker, to make sure the fault clearance time is short as possible and ensure the supply system stability against fault,


In order to make sure the operation of BC/BS dead zone protection(50DZ) is more advance, secure and meet the modern age requirement of deed zone fault, both of the BC/BS circuit breaker open and close position will be considered.

3.4.1.1 Function Block

3.4.1.2 Signals

Table	3.4.1	50DZ	Input	Signals
-------	-------	------	-------	---------

NO.	Signal	Description
1	BCy/BSz_Open_Mode	This signal indicating that BCy/BSz breaker is open .
2	87B_Tr_Bcy/BSz	This signal indicating that 87B operates to trip BCy/BSz.
3	87B_CheckZone_Str	This signal indicating that check zone element picks up
4	87B_DscrimZone1_Str	This signal indicating that discriminative zone1 element picks up
5	87B_DscrimZone2_Str	This signal indicating that discriminative zone2 element picks up
6	87B_VBE_Rls_Bus1	This flag indicating that 87B_VBE of busbar 1 is released.
7	87B_VBE_Rls_Bus2	This flag indicating that 87B_VBE of busbar 2 is released.

Table 3.4.2 50DZ Output Signals

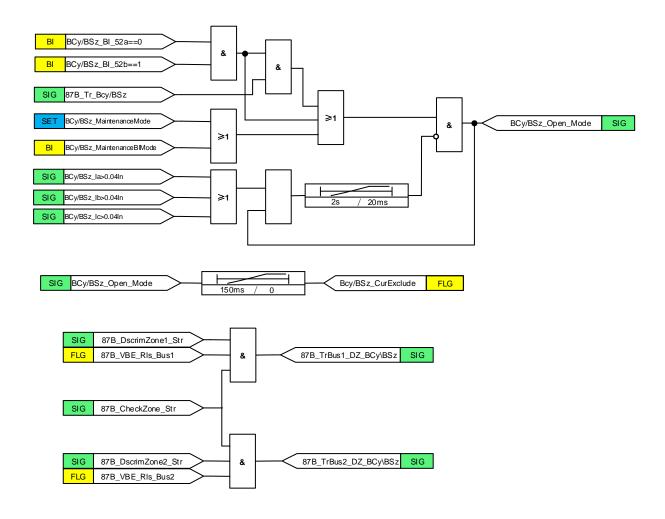
NO.	Signal	Description
1	87B_TrBus1_DZ_BCy/BSz	50DZ of BCy/BSz operates to trip busbar 1.
2	87B_TrBus2_DZ_BCy/BSz	50DZ of BCy/BSz operates to trip busbar 2.

3.4.2 Protection Principle

BC/BS dead zone protection can operate under two conditions: BC/BS breaker is open and BC/BS

breaker is closed.

3.4.2.1 BC/BS breaker is open


In this case, in order to prevent both busbars from tripping for an dead zone fault, the BC/BS current will be excluded from discriminating zone differential elements, and then the 87B will operate to trip the busbar on the CT side directly and thus to final fault clarification.

3.4.2.2 BC/BS breaker is Closed

In this case, first busbar on the breaker side is switched off, however the fault current is not yet interrupted. The circuit breaker opens and is detected by the 50DZ through its tap indication after 150ms, and the BC/BS current will be excluded from discriminatingzonedifferential elements .The operating criteria of 87B for busbar on the breaker side is fulfilled, and then 87B operates to trip the corresponding busbar.

3.4.3 Logic

The logic of 50DZ is shown as follows:

3.5 Feeder End-fault Protection 50FDZ

3.5.1 Overview

Lines or feeder's protection of designing scheme criteria is totally different from transformer or motors protection of designing scheme because the length of feeder is too long and it runs through the open environment. That's why feeder protection is too much complex and need to be taken more attention as compare to other equipment's of protection.

The fault between the current measuring circuit CT and open position circuit breaker of feeder is known as feeder end fault figure 3.5.1 shows the structural detail. If the fault happens in the end of feeder, the feeder end-fault protection(50FDZ) will operate and secure the bus supply system.

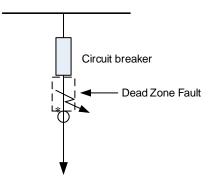
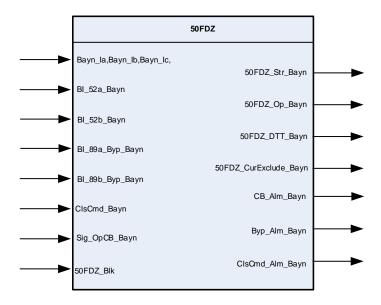



Figure 3.5.1 Fault in the Dead Zone of the Feeder Bay

NOTICE!

If feeder end-fault protection is enabled, the closing binary input of the feeder "**CIsCmd_Bayn**" **MUST** be connected to the device, otherwise mal-operation of busbar current differential protection maybe happens.

3.5.1.1 Function Block

3.5.1.2 Signals

Table 3.5.1 50FDZ Input Signals

NO.	Signal Description			
1	BI_52a_Bayn	Normally open auxiliary contact of the circuit breaker of bay n		
2	BI_52b_Bayn	Normally close auxiliary contact of the circuit breaker of bay n		
3	BI_89a_Byp_Bayn	Normally open auxiliary contact of the transfer bus disconnector of bay n		
4	BI_89b_Byp_Bayn	Normally close auxiliary contact of the transfer bus disconnector of bay n		
5	ClsCmd_Bayn	Binary input for closing command of the circuit breaker of bay n		
6	Sig_OpCB_Bayn	Signal of 87B operate to trip the circuit breaker of bay n		
7	50FDZ_Blk	Binary input for blocking 50FDZ function.		

Table 3.5.2 50FDZ Output Signals

NO.	Signal Description			
1	50FDZ_Str_Bayn	50FDZ of bay n starts		
2	50FDZ_Op_Bayn	50FDZ of bay n operates		
3	50FDZ_DTT_Bayn	50FDZ of bay n operates to initiate transfer trip to trip remote circuit breaker.		
4	50FDZ_CurExclude_Bayn	The current of bay n is excluded from differential current		
5	CB_Alm_Bayn	Alarm signal indicating that the position of circuit breaker is abnormal		
6	Byp_Alm_Bayn	Alarm signal indicating that the position of transfer bus disconnector is abnormal		
7	ClsCmd_Alm_Bayn	Alarm signal indicating that close command of bay n is energized for over 10s		

3.5.2 Protection Principle

If the breaker of a feeder is open, and three phase currents of the feeder are all smaller than 0.04In, then the feeder current will be excluded from differential elements of 87B, and the signal 50FDZ_CurExclude_Bayn and 50FDZ_ConfirmCBOpen_Bayn will be issued. Also, if the break is firstly close and triped by the busbar differential protection when a dead zone fault occurs, the feeder CT current is still larger than the current setting 50FDZ_Cur_Str_Bayn, so after a time delay 50FDZ_ChkCB_Bayn, the signal 50FDZ_ConfirmCBOpen_Bayn will be issued. For a fault occurres between circuit breaker and CT, with the conditions that the signal 50FDZ_ConfirmCBOpen_Bayn is set and any phase current of feeder bay n is larger than the current setting 50FDZ_Op_T_Bayn.

50FDZ is blocked during the following events and operating states:

1. With the circuit breaker closed.

- 2. With the transfer bus disconnector closed.
- 3. After issuing the close command for the circuit breaker within a fixed time 1s.
- 4. The binary input signal 50FDZ_Blk is energized.

If the binary input ClsCmd_Bayn is energized for over 10s, an alarm ClsCmd_Alm_Bayn will be issued.

3.5.3 Logic

The logic of 50FDZ is shown as follows:

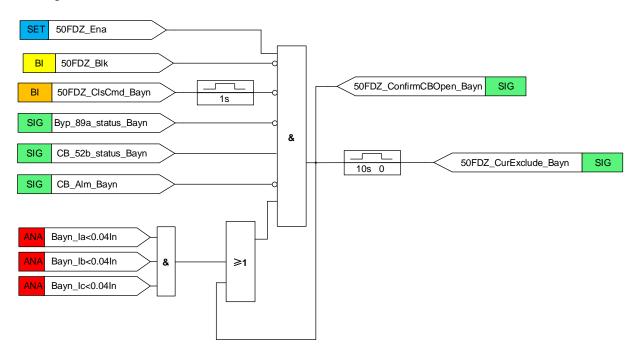
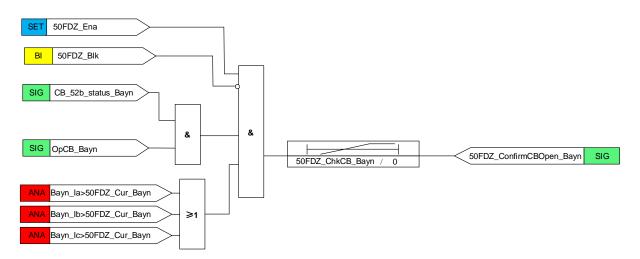
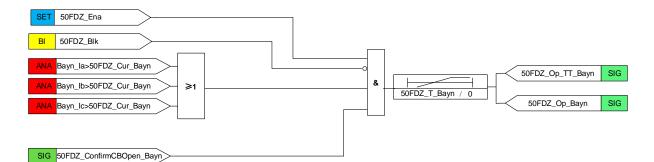
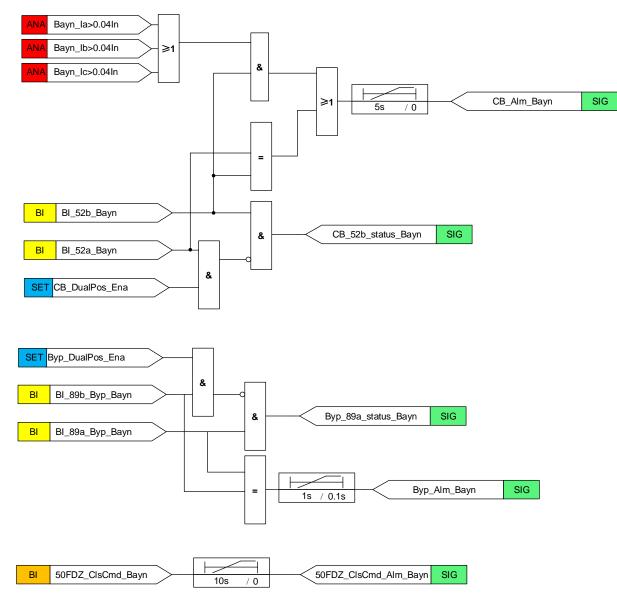





Figure 3.5.2 Logic Block Diagram of 50FDZ when feeder breaker is open

Figure 3.5.4 Logic Block Diagram of 50FDZ transfer trip

Figure 3.5.5 Logic Block Diagram of 50FDZ auxiliary functions

3.5.4 Settings

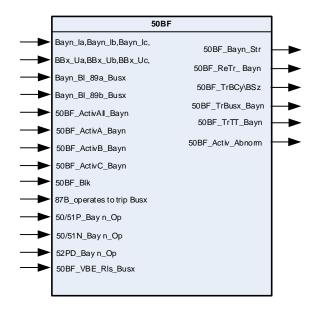
Table 2.4-3 50FDZ Settings

Name	Values (Range)	Unit	Step	Default	Description
50FDZ_Cur_Bayn	0.05ln~20ln	А	0.01A	20In	Current setting of 50FDZ function.
50FDZ_Op_T_Bayn	0.000~4.900s	s	0.001s	0.02	Time delay setting of 50FDZ
	0.000~4.9005	מ	0.0015	0.02	transfer trip. 20ms is recommended
					Time delay setting of 50FDZ to
50FDZ_ChkCB_T _Bayn	0.000~10.000s	S	0.001s	0.15	comfirm that circuit breaker is open.
					150ms is recommended
50FDZ_Ena_Bayn	0,1		1	0	Enabling or disabling 50FDZ
SUFDZ_Ella_Bayli	0,1	-	I	0	function of bay n.
CB DualPos Ena Bayn	0,1		1	0	Enabling or disabling dual position
	0,1	-	I	0	checking for circuit breaker of bay n.
					Enabling or disabling dual position
Byp_DualPos_Ena_Bayn	0,1	-	1	0	checking for transfer bus
					disconnector of bay n.

3.6 Feeder Breaker Failure Protection 50BF

3.6.1 Overview

The main and important function of Breaker Failure Protection 50BF is to provide backup tripping in case of the feeder circuit breaker is fail to trip. For the economic and engineering point of view this protection is very important for power system because harm situations initiate many damages. The Feeder Breaker Failure Protection 50BF continuously monitored the respective feeder circuit breaker tripping contact position. In case of abnormality 50BF provide backup support of protection to retrip the feeder circuit breaker. If the feeder circuit breaker does not open, the 50BF will trip all the adjacent feeders and initiate transfer trip to remote circuit breaker.


Feder Breaker Failure Protection 50BF starting operation criteria are:

- Provide independent supervision element for 50BF
- Current criteria to detect the fault situation
- Precis Voltage Blocking element checking criteria
- Different checking criteria of binary input to increase the capability of protection

NOTICE!

In this protection there are many current checking aspects to determine the current calculation criteria and timer start time delay according to pick up signal and the 50BF protection function will operate at the ending of time delay signal.

3.6.1.1 Function Block

3.6.1.2 Signals

Table 3.6.1 50BF Input Signals

NO.	Signal	Description
1	50BF_ActivAll_Bayn	50BF three-Phase binary input of bay n.
2	50BF_ActivA_Bayn	50BF phase-A binary input of bay n.
3	50BF_ActivtB_Bayn	50BF phase-B binary input of bay n.
4	50BF_ActivC_Bayn	50BF phase-C binary input of bay n.
5	50BF_Blk	Binary input for blocking 50BF function.
6	Bayn_BI_89a_Busx	Normally open auxiliary contact of bus x disconnector of bay n.
7	Bayn_BI_89b_busx	Normally closed auxiliary contact of bus x disconnector of bay n. It is used if disconnector dual-position auxiliary contacts are adopted.
8	50BF_VBE_RIs_Busx	This flag indicating that 50BF_VBE of busbar x is released.
9	87B_operates to trip Busx	87B operates to trip Busx.
10	50/51P_Op _Bayn	50/51P operates to trip bay n.
11	50/51N_Op_Bayn	50/51N operates to trip bay n.
12	52PD_Op_Bayn	52PD operates to trip bay n.

Table 3.6.2 50BF Output Signals

NO.	Signal	Description
1	50BF_Bayn_Str	This signal indicating that 50BF of Bay n picks up.
2	50BF_ReTr_Bayn	50BF of bay n operates to re-trip the breaker.
3	50BF_TrBCy\BSz	50BF operates to trip BC breaker y or BS breaker z.
4	50BF_TrBusx_Bayn	50BF operates to trip busbarx.

NO.	Signal	Description
5	50BF_TrTT_Bayn	50BF operates to initiate transfer trip to remote circuit breaker of bay n.
6	50BF_Activ_Abnorm	Alarm signal indicating that failure initiating binary input for 50BF of any bay is energized for over 20s.

3.6.2 Protection Principle

Circuit breaker failure protection 50BF is available for each connected bay of the busbar. When a breaker is determined failure to open, the 50BF will re-trip the breaker after time delay of 50BF_ReTr_T. If the fault is still existed, the 50BF will trip BC\BS after time delay of 50BF_TrBC_T and all circuit breakers connected to the busbar after time delay of 50BF_TrBus_T. 50BF also provides the function to initiate transfer trip to remote circuit breaker with the time delay of 50BF_TrBus_T.

3.6.2.1 Supervision Element

BP-2C provides independent supervision element for 50BF, if one of the following two conditions is fulfilled, supervision element for 50BF of bay n picks up.

- 1. Breaker failure initiating binary input (phase-segregated or three-phase tripping contact) of bay n are energized.
- 2. 87B operates to trip the bay.
- 3. 50/51 operates to trip the bay.
- 4. 52PD operates to trip the bay.

3.6.2.2 Current Detection Element 50BF_CDE

1. Current criterion 1

Phase current is greater than the setting 50BF_Cur_Str_Bayn.

2. Current criterion 2

Residual current is greater than the setting 50BF_ResCur_Str_Bayn.

3. Current criterion 3

Negative sequence current is greater than the setting 50BF_NegCu_Str_Bayn.

criterion2 and criterion3 are controlled by the logic setting of 50BF_ResCur_Ena_Bayn and 50BF_NegCur_Ena_Baynrespectively.

The whole bay adopts phase current, residual current, and negative current "OR gate" logic, each bay has its own current settings.

3.6.2.3 Voltage Block Element 50BF_VBE

Voltage block element is used as a blocking condition of 50BF. If the fault voltage doesn't fulfills the voltage criterion, the 50BF will be blocked.

The releasing criteria of 50BF_VBE are:

 $\begin{cases} U_p \leq 50BF_Vol_Blk \\ 3U_0 \geq 50BF_ResVol_Blk \\ U_2 \geq 50BF_NegVol_Blk \end{cases}$

Where:

^{Up}: The phase-to-earth voltages of the busbar.

 $^{3U_{0}}$: Residual voltage of the busbar(calculated internally).

 U_2 :Negative voltage of the busbar(calculated internally).

50BF_Vol_Blk: Phase voltage setting of 50BF_VBE.

50BF_ResVol_Blk: Residual voltage setting of 50BF_VBE.

50BF_NegVol_Blk: Negative voltage setting of 50BF_VBE.

When the protective device is applied to an unearthed system, the system setting UnearthedSys_Mod is set as "1", the criteria of 50BF_VBE will be changed.

$$\begin{cases} U_{pp} \leq \sqrt{3} \times 50BF_Vol_Blk \\ U_2 \geq 50BF_NegVol_Blk \end{cases}$$

Where:

Upp : Phase-to-phase voltage.

U₂: Negative sequence voltage.

50BF_Vol_Blk: Phase-to-earth voltage setting of 50BF_VBE.

50BF_NegVol_Blk: Negative voltage setting of 50BF_VBE.

If the releasing voltage block element binary input "50BF_BI_RIsVBE_Bayn" is energized, the voltage blocking for breaker failure protection of bay n will be released.

3.6.2.4 Binary Input

1. Phase-segregated tripping contact

50BF_ActivA_Bayn: Phase-A breaker failure initiating binary input of bay n

50BF_ActivB_Bayn: Phase-B breaker failure initiating binary input of bay n.

50BF_ActivC_Bayn: Phase-C breaker failure initiating binary input of bay n.

2. Three-phase tripping contact

50BF_ActivAll_Bayn: Three-Phase breaker failure initiating binary input of bay n.

For a main-transformer bay, only three-phase BFI contact is provided.When the supervision element detects long-time (fixed as 20s) duration of BFI, it will output an alarm signal of 50BF Activ Abnormal, and mask the corresponding binary input channel.

3. Binary input for blocking 50BF function

50BF_Blk: The binary input for blocking 50BF function, if it is not configured, its default value is "0".

3.6.3 Logic

The logic of 50BF_VBE is shown as follows:

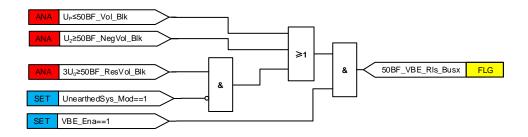
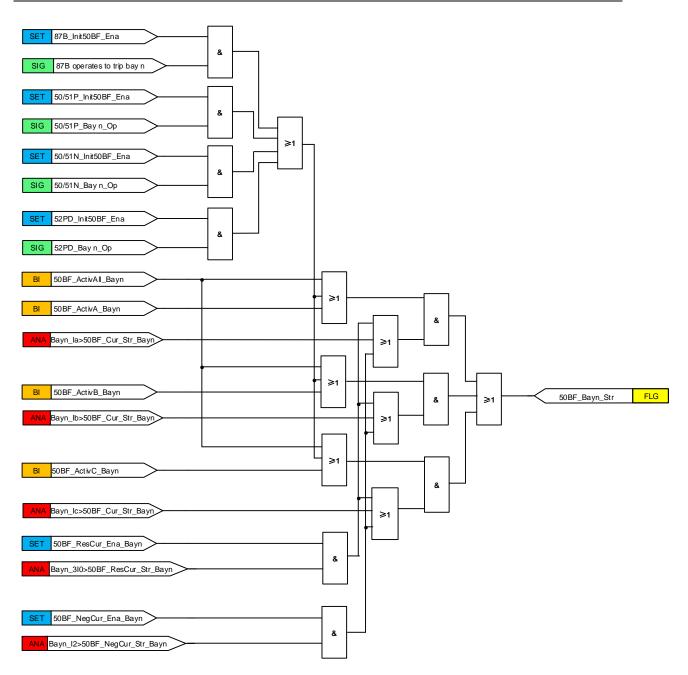
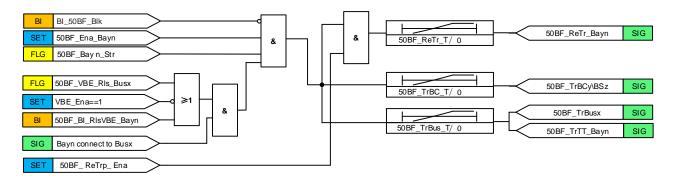




Figure 3.6.1 Logic Block Diagram of 50BF_VBE

Figure 3.6.2 Logic Block Diagram of 50BF_CDE

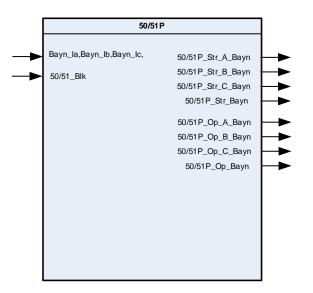
3.6.4 Settings

Name	Values (Range)	Unit	Step	Default	Description
BusIntLink_EnMode	0,1	-	1	0	Enabling or disabling inter-linked operaton mode.
BC\BS_MaintenanceMode	0,1	-	1	0	Enabling or disabling circuit breaker maintenance mode of bus couplers or section.
UnearthedSys_Mod	0,1	-	1	0	0: Earthed system; 1: Unearthed system.
VBE_Ena	0,1	-	1	0	Enabling or disabling 87B/50BF_VBE
DS_DualPosition	0,1	-	1	0	Enabling or disabling dual-position for disconnector status.
BC_DualPosition	0,1	-	1	0	Enabling or disabling dual-position for bus couplers or bus sections status.

Table 3.6.3 Public Settings

Table 3.6.4 50BF Settings

Name	Values (Range)	Unit	Step	Default	Description
50BF_Vol_Blk	0~100	V	0.01V	40	Under voltage setting of 50BF_VBE.
50BF_ResVol_Blk	0~70	V	0.01V	6	Residual voltage setting of 50BF_VBE.
50BF_NegVol_Blk	0~70	V	0.01V	4	Negative-sequence voltage setting of 50BF_VBE.
50BF_ReTr_T	0.000~10.000	s	0.001s	10	Time delay setting of 50BF operates to re-trip breaker.
50BF_TrBC_T	0.000~10.000	s	0.001s	10	Time delay setting of 50BF operates to trip BC breaker.
50BF_TrBus_T	0.000~10.000	s	0.001s	10	Time delay setting of 50BF operates to trip busbar.
87B_Init50BF_Ena	0,1		1	0	Enabling or disabling 87B to initiate 50BF
50/51P_Init50BF_Ena	0,1	-	1	0	Enabling or disabling 50/51P to init 50BF
50/51N_Init50BF_Ena	0,1	-	1	0	Enabling or disabling 50/51N to init 50BF
50BF_ReTrip_Ena	0,1	-	1	0	Enabling or disabling 50BF operates to re-trip breaker.
50BF_Cur_Str_Bayn	0.00ln~20ln	A	0.01A	20ln	Phase current setting of 50BF of bay n.


Name	Values (Range)	Unit	Step	Default	Description
50BF_ResCur_Str_Bayn	0.00ln~20ln	A	0.01A	20In	Residual current setting of 50BF of bay n.
50BF_NegCur_Str_Bayn	0.00ln~20ln	А	0.01A	20In	Negative-sequence current setting of 50BF of bay n
50BF_ResCur_Ena_Bayn	0,1	-	1	0	Residual current criterion of 50BF of bay n is enabled or not
50BF_NegCur_Ena_Bayn	0,1	-	1	0	Negative-sequence current criterion of 50BF of bay n is enabled or not
50BF_Ena_Bayn	0,1	-	1	0	 Enabling breaker failure protection Disabling breaker failure protection

3.7 Phase OverCurrent Protection 50/51P

3.7.1 Overview

The main and important function of phase overcurrent protection 50/51P is to continuously track the electrical feeder passing current. For the point of view of continuously power supply and minimum damage during fault condition (at the time of fault the normal current value is increases suddenly and this current is too harmful for supply system). if the measured current value is greater than the set level, the sub protection function of BP-2C phase overcurrent protection 50/51P will operates or gives alarm signal with dependable definite time delay (DT) or inverse definite time (IDMT) delay characteristics and each has same logic of operation settings.

3.7.1.1 Function Block

3.7.1.2 Signals

Table 3.7.1 50/51F	P Input Signals
--------------------	-----------------

NO.	Signal	Description
1	50/51_Blk	Binary input for blocking 50/51 function.

Table 3.7.2 50/51P Output Signals

NO.	Signal	Description
1	50/51P_ Str_Bayn	This signal indicating that 50/51P picks up of bay n.
2	50/51P_Str_A/B/C_Bayn	This signal indicating that phase A/B/C of 50/51P picks up of bay n.
3	50/51P_Op_Bayn	This signal indicating that 50/51P operates of bay n.
4	50/51P_Op_A/B/C_Bayn	This signal indicating that phase A/B/C of 50/51Poperates of bay n.

3.7.2 Protection Principle

3.7.2.1 Supervision Element

The phase overcurrent protection is provided with independent logic, current and time delay settings. When any phase current of bay n is larger than the current setting, phase overcurrent element picks up. The operating criteria are shown as follow.

 $max\{I_{a Bavn}, I_{b Bavn}, I_{c Bavn}\} > 50/51P_Cur_Str_Bayn$

Where:

 $I_{a_Bayn}, I_{b_Bayn}, I_{c_Bayn}$:Phase-A,B,C current of bayn respectively.

50/51P_Cur_Str_Bayn :current setting of bay n.

3.7.2.2 Characteristic Curve

50/51P can be selected as definite-time or inverse-time characteristic. The inverse-time operating characteristic is as follow.

$$t = \left(\frac{K}{(\frac{I}{I_p})^{\alpha} - 1} + C\right) \times T_p$$

Where:

^I_p:Current setting 50/51P_Curx_Bayn.

 T_p :Time multiplier setting 50/51P_T_Mult_Bayn.

 $^{\alpha}$:A constant setting 50/51P_Alpha_Bayn.

K: A constant setting 50/51P_K_Bayn.

C: A constant setting 50/51P_C_Bayn.

I:Measured phase current.

The user can select the operating characteristic from various inverse-time characteristic curves by setting 50/51P_Op_Curve_Bayn, and parameters of available characteristics for selection are shown in the following table.

50/51P_CurvexBayn	vex_Bayn Time Characteristic		۵	С
0	Definite time			
1	IEC Normal inverse	0.14	0.02	0
2	IEC Very inverse	13.5	1.0	0
3	IEC Extremely inverse	80.0	2.0	0
4	IEC Long-time inverse		1.0	0
5	User-defined time inverse	User-defined	User-defined	User-defined

Table 3.7.3 Inverse-time curve parameters

3.7.3 Logic

The logic of 50/51P is shown as follows:

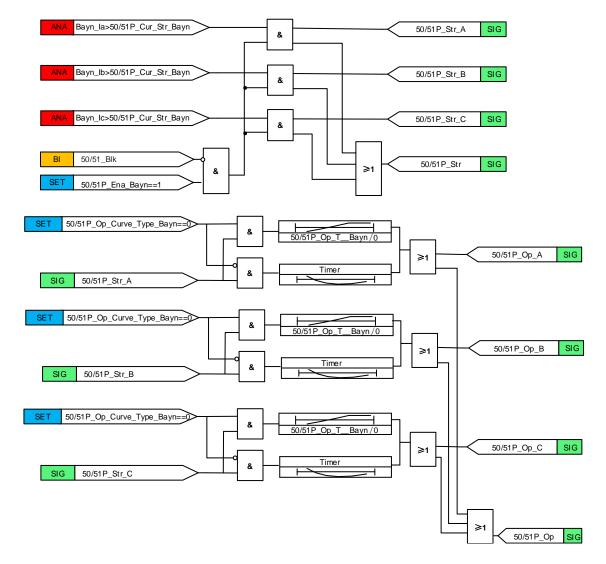


Figure 3.7.1 Logic Block Diagram of 50/51P

5: User-defined time inverse The time factor setting of IDMT

phase overcurrent protection Minimum operate time for

> inverse curves constant a of

50/51P constant C of

50/51P constant K of

50/51P Enabling or disabling phase

overcurrent protection of bay n

3.7.4 Settings

				-	
Name	Values (Range)	Unit	Step	Default	Description
50/51P_Cur_Str_Bayn	0.05ln~20ln	А	0.01A	20In	Current setting of bay n.
50/51P_Op_T_Bayn	0.000~100.000	s	0.001s	0.1	Definite Time delay setting
50/51P_Op_Curve_Type_Bayn	0~5	-	1	0	characteristic curve for 50/51P, 0:Definite time 1:IEC Normalinverse 2:IEC Very inverse 3: IEC Extremely inverse 4: IEC Long-time inverse

-

s

_

_

_

0.001

0.001

0.001

0.001

0.001

1

1

0.020

0.020

0

0.140

0

Table 3.7.4 50/51P Settings

3.8 Ground OverCurrent Protection 50/51N

0.010~200.000

0.000~60.000

0.010~5.000

0.000~20.000

0.005~200.000

0.1

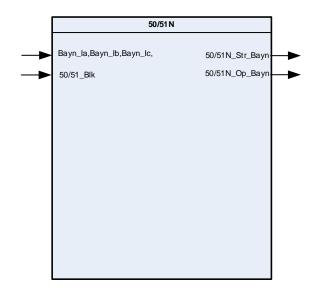
3.8.1 Overview

50/51P_T_Mult_Bayn

50/51P_Min_Op_T_Bayn

50/51P_Alpha_Bayn

50/51P_C_Bayn


50/51P_K_Bayn

50/51P_Ena_Bayn

In electrical power industry, ground overcurrent protection (50/51N) is very important and need to detect very accurate ground or earth fault value and clear this fault as soon as possible. When the groundfault is happening in the bus system, according to ohm law current always flows to the low resistive path and all current goes into the grounding system and it's a main reason to increase the current level of zero-sequence current and its effect on increasing the bay residual current.

50/51N is based on residual current of bay. If the detected residual current of bay is greater than set value, the 50/51N will operates or gives alarm signal with dependable definite time delay (DT) or inverse definite time (IDMT) delay characteristics and each has same logic of operation settings.

3.8.1.1 Function Block

3.8.1.2 Signals

Table 3.8.1 50/51N Input Signals

NO.	Signal	Description
1	50/51_Blk	Binary input for blocking 50/51N function.

Table 3.8.2 50/51N Output Signals

NO.	Signal	Description
1	50/51N_Op_Bayn	This signal indicating that 50/51N operates of Bay n.
2	50/51N_Str_Bayn	This signal indicating that 50/51N picks up of Bay n.

3.8.2 Protection Principle

3.8.2.1 Supervision Element

When residual current of bay n is larger than the threshold, ground overcurrent element picks up, the operating criterion shown as follow.

$$3I_0 Bayn > 50/51NCurStrBayn$$

Where:

3l_{0 Bayn}:Residual current of bayn.

50/51G_Cur_Bayn :Residual current setting of bay n.

3.8.2.2 Characteristic Curve

50/51N can be selected as definite-time or inverse-time characteristic. The inverse-time operating characteristic is as follows.

$$t = \left(\frac{K}{(\frac{l}{l_p})^{\alpha} - 1} + C \right) \times T_p$$

Where:

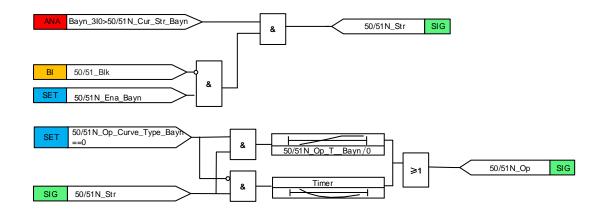
 I_p :Residual current setting 50/51N_Cur_Str_Bayn.

- T_p :Time multiplier setting 50/51N_T_Mult_Bayn.
- α: A constant setting 50/51N_Alpha_Bayn.

K: A constant setting 50/51N_K_Bayn.

C: A constant setting 50/51N_C_Bayn.

I:Measured residual current.


The user can select the operating characteristic from various inverse-time characteristic curves by setting 50/51N_Op_Curve_Type_Bayn, and parameters of available characteristics for selection are shown in the following table.

50/51P_CurvexBayn	Time Characteristic	К	α	С
0	Definite time			
1	IEC Normal inverse	0.14	0.02	0
2	IEC Very inverse	13.5	1.0	0
3	IEC Extremely inverse	80.0	2.0	0
4	4 IEC Long-time inverse		1.0	0
5	User-defined time inverse		User-defined	User-defined

Table 3.8.3 Inverse-time curve parameters	Table 3.8.3	Inverse-time	curve	parameters
---	-------------	--------------	-------	------------

3.8.3 Logic

The logic of 50/51N is shown as follows:

Figure 3.8.1 Logic Block Diagram of 50/51N

3.8.4 Settings

Name (Range)		Unit	Step	Default	Description
50/51N_Cur_Str_Bayn	0.05ln~20ln	A	0.01A	20In	Residual current setting of bay n.
50/51N_Op_T_Bayn	0.000~100.000	s	0.001s	0.1	Definite Time delay setting of bay n.
50/51N_Op_Curve_Type_Bayn	0~5	-	1	0	characteristic curve for 50/51N, 0:Definite time 1:IEC Normalinverse 2:IEC Very inverse 3: IEC Extremely inverse 4: IEC Long-time inverse 5: User-defined time inverse
50/51N_T_Mult_Bayn	0.010~200.000	-	0.001	1	The time factor setting of IDMT ground overcurrent protection of bay n
50/51N_Min_Op_T_Bayn	0.000~60.000	S	0.001	0.020	Minimum operate time for inverse curves
50/51N_Alpha_Bayn	0.010~5.000	-	0.001	0.020	constant α of 50/51N
50/51N_C_Bayn	0.000~20.000	-	0.001	0	constant C of 50/51N
50/51N_K_Bayn	0.005~200.000	-	0.001	0.140	constant K of 50/51N

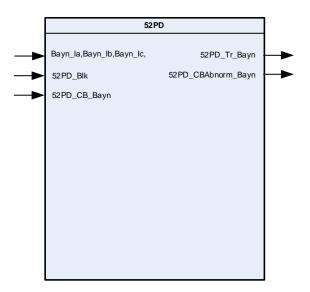
Table 3.8.4 50/51N Settings

Name	Values (Range)	Unit	Step	Default	Description
50/51N_Ena_Bayn	0,1	-	1	0	Enabling or disabling ground overcurrent protection of bay n

3.9 Pole DiscordanceProtection 52PD

3.9.1 Overview

In electrical supply system there are many reason to harm the electrical equipment's (motors and generator) like the excessive value of negative and zero sequence current are caused by open phase. These kind of situation initiate mal-operation in the supply system, so it's necessary to trip respective circuit breaker immediately and clear this fault.


The main function of Pole Discordance Protection 52PD is to monitored the circuit breaker contact position through the auxiliary contact of circuit breaker. There are many chances to some interruption in tripping coil or mechanical structure, so the result is breaker failure like stuck pole contacts position. Pole Discordance Protection 52PD detect and judge the breaker discordance situation based on following rules and operate:

- Three phase CB aux contact supervision based on six contact, three for open position and three for close position
- Negative and zero sequence current detection criteria

NOTICE!

Pole Discordance Protection 52PD is also have blocking function capability in case if any condition of operation is not satisfied.

3.9.1.1 Function Block

3.9.1.2 Signals

Table 3.9.152PD Input Signals

NO.	Signal Description			
1	52PD_Blk	Binary input for blocking 52PD function.		
2	52PD_CB_Bayn Binary input indicatescircuit breaker of bay n is in p			
2	SZFD_CB_BayII	discordance status.		

Table 3.9.252PD Output Signals

NO.	Signal Description				
1	52PD_Tr_Bayn	52PD operates to trip the circuit breaker of bay n.			
2	52PD_CBAbnorm_Bayn	Alarm signal indicates that pole discordance binary input of bay n picks up for over 20s.			

3.9.2 Protection Principle

The 52PD operates based on information from auxiliary contacts of the circuit breaker with additional criteria. The pole discordance protection (52PD) detects a breaker pole position discrepancyand generates a three phase command trip to the circuit breaker after a setting time delay 52PD_T_Bayn.

3.9.2.1 ThreePhase CB Aux Contacts Supervision

The contact based function checks the position of the circuit breaker through six of its auxiliary contacts: three parallel connected normally open contacts are connected in series with three parallel connected normally closed contacts. This hard-wired logic gives a closed signal which is the binary input52PD_CB_Baynin case of pole discordance in the circuit breaker.

When the supervision element detects long-time (fixed as 20s) duration of the binary input52PD_CB_Bayn, it will output an alarm signal of 52PD_CBAbnorm_Bayn, and mask the binary input.

3.9.2.2 Current Detection Element

1. Current criterion 1

Residual current is greater than the setting 52PD_ResCur_Bayn.

2. Current criterion 2

Negative sequence current is greater than the setting 52PD_NegCur_Bayn.

The whole bay adopts residual current and negative current "OR gate" logic, each bay has its own current settings.

3.9.3 Logic

The logic of 52PD is shown as follows:

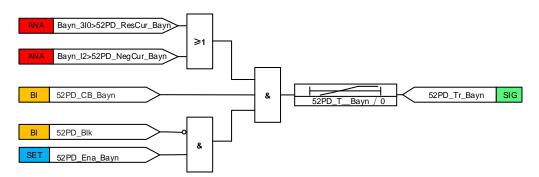


Figure 3.9.1 Logic Block Diagram of 52PD

3.9.4 Settings

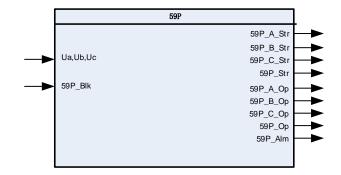
Table 3.9.3 52PD Settings	
---------------------------	--

Name	Values (Range)	Unit	Step	Default	Description
52PD_ResCur_Bayn	0.05ln~20.00ln	А	0.01A	20In	Residual current setting
52PD_NegCur_Bayn	0.05ln~20.00ln	А	0.01A	20In	Negative-sequence current setting
52PD_TBayn	0.001~10.000s	s	0.001s	10	Time delay setting
52PD_Ena_Bayn	0,1	-	1	0	Enabling or disabling 52PD of bay n

3.10 Three-phase Overvoltage protection (59P)

3.10.1 Overview

The main operating function of Three-phase overvoltage protection (59P) is to continuously measure the protected busbar voltage limit caused by different faults. If the detected voltage limit is greater than the set threshold, the protection will operate or give alarm signal with dependable multi stage definite time delay (DT) or inverse definite minimum time (IDMT) delay characteristics. This protection has extra ordinary feature to operate with overcurrent protection.


59P can support several kind of VT connection:

- Three phase voltage (Ua, Ub, Uc)
- Three phase-to-phase voltages (Uab, Ubc, Uca)
- Two phase-to-phase voltages (Uab, Ubc)

Three-phase overvoltage protection 59P has also blocking function capability.

In addition, the 59P can be configured as a backup protection for each busbar.

3.10.1.1 Function Block

3.10.1.2 Signals

Table 3.10-1 59P Input Signals

NO.	Signal	Description
1	59P_Blk	Block signal of 59P
2	Ua,Ub,Uc	the three phase group signal for voltage inputs

Table 3.10-2 Output Signals

NO.	Signal	Description
1	59P_A_Str	phase A Start signal from 59P
2	59P_B_Str	phase B Start signal from 59P
3	59P_C_Str	phase C Start signal from 59P
4	59P_Str	CommonStart signal from 59P
5	59P_A_Op	phase A Operation signal from 59P
6	59P_B_Op	phase B_Operation signal from 59P
7	59P_C_Op	phase C Operation signal from 59P
8	59P_ Op	Operation signal from 59P
9	59P_ Alm	Alarm signal from 59P

3.10.2 Protection Principle

The three-phase overvoltage protection function can be enabled or disabled by setting the corresponding $59P_Ena$ parameter values as "1" or "0".

The fundamental frequency component of the measured three phase voltages is compared phasewise to the set value of the $59P_Vol_Str$ setting. If the measured value is higher than the set value of the $59P_Vol_Str$ setting, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases matches the set $59P_Str_Ph_Num$ and no blocking signal input is activated, the phase selection logic activates the timer and the $59P_Str$ output and the corresponding output of the respective phases ($59P_Str_A/B/C$). The $59P_Vol_Opt$ setting is used for selecting phase-to-earth ($59P_Vol_Opt = 0$) or phase-to-phase($59P_Vol_Opt = 1$) voltages for protection.

59*P_Vol_Str* is the preset value to check for the voltage

59P_Str_Ph_Num shows the number of phases required for operate activation.

Depending on the value of the set $59P_Op_Curve_Type$, the time characteristics are selected according to DT ($59P_Op_Curve_Type = 0$) or IDMT ($59P_Op_Curve_Type = 1 \sim 5$). 59P supports the following IDMT operating curve type:

$$t(I) = \left(\frac{K}{\left(\frac{U}{U_{set}}\right)^{\alpha} - 1} + C\right) \times T_{p}$$

IDMT Characteristic	К	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	•
IEC Very inverse	13.5	1.0	0	2	•
IEC Extremely inverse	80.0	2.0	0	3	•
IEC Long-time inverse	120.0	1.0	0	4	•
IEC User-defined inverse	К	α	С	5	•

When the operation timer has reached the value set by $59P_{-}Op_{-}T$ in the DT mode or the value set by the IDMT operate time curve, the $59P_{-}Op$ output is activated. The corresponding output for the respective phases ($59P_{-}Op_{-}A/B/C$) is also activated. For the IDMT model, $59P_{-}Min_{-}Op_{-}T$ defines the minimum desired operate time for IDMT.

If a drop-off situation occurs, that is, a fault suddenly disappears before the operation delay is exceeded, the reset state is activated, the timer is reset and the $59P_Str$ output is deactivated.

The binary input $59P_Blk$ can be used to block the function. The activation of the $59P_Blk$ input deactivates all outputs and resets the internal timers. The binary input $59P_Blk$ can be used to block the start signals and operating signals.

3.10.3 Logic

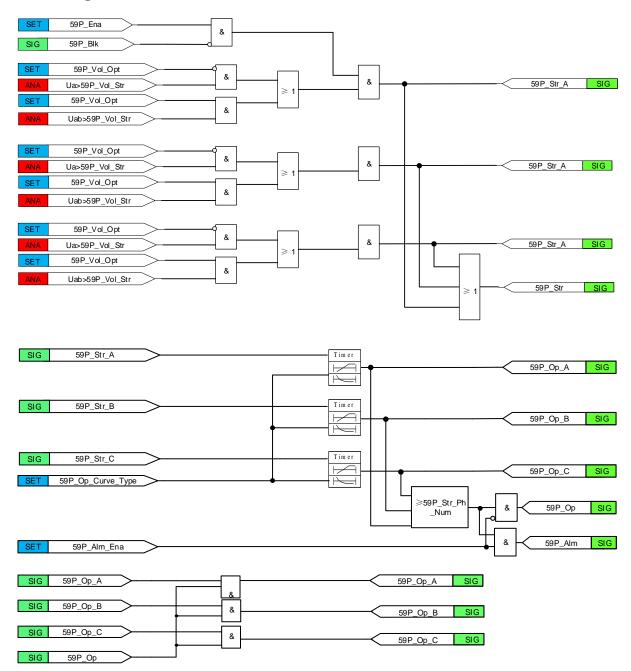


Figure 3.10-1 Functional module diagram

Where:

59*P_0p_Curve_Type* is the selection of the type of time delay curve.

 $59P_0p_T$ is the operating time delay for definite time curve.

 $59P_Min_0p_T$ is the minimum operate time delay for IDMT curves.

3.10.4 Settings

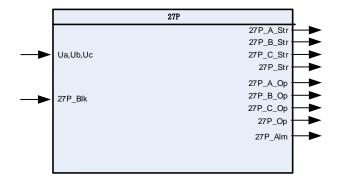
No.	Name	Values (Range)	Unit	Step	Default	Description
1	59P_Vol_Str	0.00~160.00	V	0.01	160.00	Start value of overvoltage
2	59P_Op_T	0.040~300.000	S	0.001	10.000	Operating time delay for definite time curve
3	59P_Str_Ph_Num	1/2/3	-	1	1	Number of phases required for operate activation:1 for 1 phase, 2 for 2 phases, 3 for 3 phases
4	59P_Op_Curve_Typ e	0~5	-	1	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT
5	59P_T_ Mult	0.050~200.000	-	0.001	1.000	Time multiplier in IEC curves
6	59P_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time delay for IDMT curves
7	59P_Alpha	0.000~3.000	-	0.001	1.000	constant α of 59P
8	59P_C	0.000~10.000	-	0.001	0.000	constant C of 59P
9	59P_K	0.001~100.000	-	0.001	1.000	constant K of 59P
10	59P_Vol_Opt	0/1	-	1	0	Parameter to select phase or phase-to- phase voltages: 0 forphase voltages,1 forphase- to- phase voltages
11	59P_Alm_Ena	0/1	-	1	1	Alarm Off/On
12	59P_Ena	0/1	-	1	0	Operation Off/On

Table 3.10-3 Settings of Two stage Three-phase overvoltage protection

3.11 Three-phase Undervoltage Protection (27P)

3.11.1 Overview

The main operating function of Three-phase undervoltage protection (27P) is to continuously measure the protected busbar voltage limit caused by different faults. If the detected voltage limit is below to set threshold, the protection will operate or give alarm signal with dependable multi stage definite time delay (DT) or inverse definite minimum time (IDMT) delay characteristics. This protection has extra ordinary feature to operate with overcurrent protection.


27P can support several kind of VT connection:

- Three phase voltage (Ua, Ub, Uc)
- Three phase-to-phase voltages (Uab, Ubc, Uca)
- Two phase-to-phase voltages (Uab, Ubc)

Three-phase undervoltage protection (27P) has also blocking function capability.

In addition, the 27P can be configured as a backup protection for each busbar.

3.11.1.1 Function Block

3.11.1.2 Signals

Table 3.11-1 27P Input Signals

NO.	Signal	Description	
1	Ua,Ub,Uc	"Ua,Ub,Uc" is the three phase group signal for voltage inputs	
2	27P_Blk	Block signal of 27P	

Table 3.11-227POutput Signals

NO.	Signal	Description		
1	27P_A_Str	phase A Start signal from 27P		
2	27P_B_Str	phase B Start signal from 27P		
3	27P_C_Str	phase C Start signal from 27P		
4	27P_Str	CommonStart signal from 27P		
5	27P_A_Op	phase A Operation signal from 27P		
6	27P_B_Op	phase B Operation signal from 27P		
7	27P_C_Op	phase C Operation signal from 27P		
8	27P_Op	Operation signal from 27P		
9	27P_Alm	Alarm signal from 27P		

3.11.2 Protection Principle

The three-phase undervoltage protection function can be enabled or disabled by setting the corresponding $27P_Ena$ parameter values as "1" or "0".

The fundamental frequency component of the measured three phase voltages are compared phase-wise to the set value of the $27P_Vol_Str$ setting. If the measured value is lower than the set

value of the $27P_Vol_Str$ setting, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases matches the set $27P_Str_Ph_Num$ and no blocking signal input is activated, the phase selection logic activates the timer and the 27P_Str output and the corresponding output of the respective phases ($27P_Str_A/B/C$).

The $27P_Vol_Opt$ setting is used for selecting phase-to-earth ($27P_Vol_Opt = 0$) or phase-to-phase($27P_Vol_Opt = 1$) voltages for protection.

27P_Vol_Str is the preset value to check for the voltage

27P_Str_Ph_Num shows the number of phases required for operate activation.

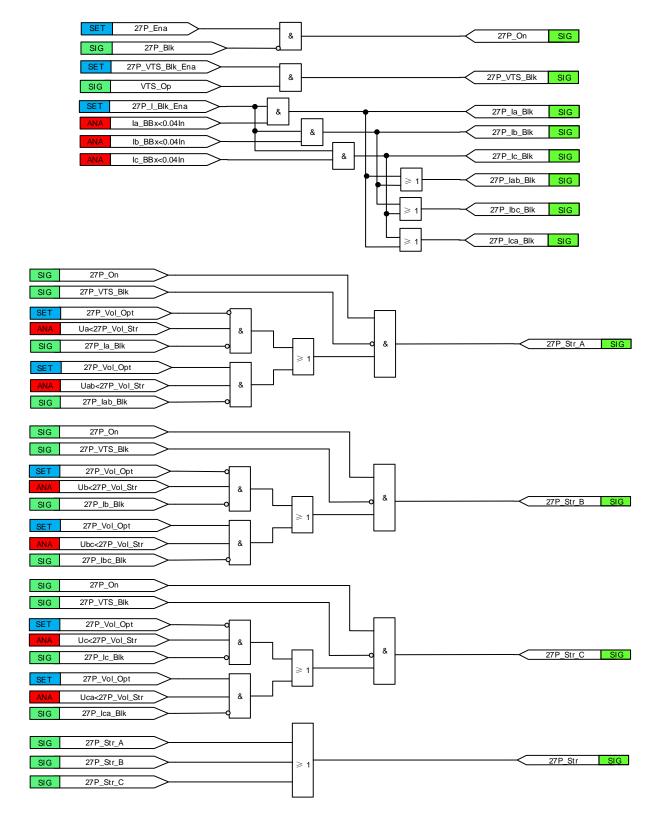
Blocking for low current levels is activated by setting. The desired blocking level can be adjusted by the 27*P_I_Blk_Ena* setting.

For example: If the measured current level decreases below the 0.05A, either the trip output of stage 1, or both the trip and the START outputs of stage 1, are blocked. Blocking for low voltage levels is activated by default.

Depending on the value of the set $27P_Op_Curve_Type$, the time characteristics are selected according to DT ($27P_Op_Curve_Type = 0$) or IDMT ($27P_Op_Curve_Type = 1\sim5$). 27P supports the following IDMT operating curve type:

$$t(I) = \left(\frac{K}{1 - (\frac{U}{U_{set}})^{\alpha}} + C\right) \times T_p$$

IDMT Characteristic	К	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	•
IEC Very inverse	13.5	1.0	0	2	•
IEC Extremely inverse	80.0	2.0	0	3	-
IEC Long-time inverse	120.0	1.0	0	4	-
IEC User inverse	К	α	С	5	


When the operation timer has reached the value set by $27P_{-}Op_{-}T$ in the DT mode or the value set by the IDMT operate time curve, the $27P_{-}Op$ output is activated. The corresponding output for the respective phases ($27P_{-}Op_{-}A/B/C$) is also activated. For the IDMT model, $27P_{-}Min_{-}Op_{-}T$ defines the minimum desired operate time for IDMT.

If a drop-off situation occurs, that is, a fault suddenly disappears before the operation delay is exceeded, the reset state is activated, the timer is reset and the $27P_Str$ output is deactivated.

The binary input $27P_Blk$ can be used to block the function. The activation of the $27P_Blk$ input deactivates all outputs and resets the internal timers.

3.11.3 Logic

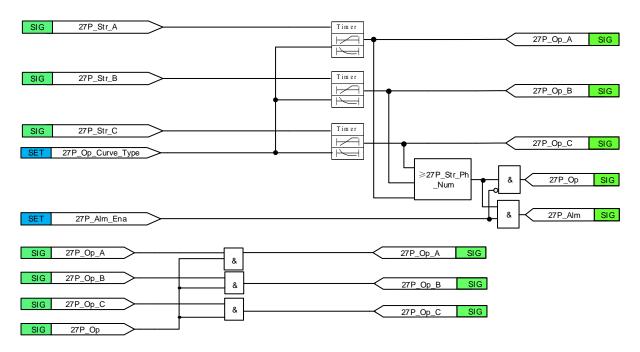


Figure 3.11-1 Functional module diagram

3.11.4 Settings

No.	Name	Values (Range)	Unit	Step	Default	Description
1	27P_Vol_Str	0.00~160.00	V	0.01	40.00	Start value of undervoltage
2	27P_Op_T	0.040~300.000	s	0.001	10.000	Operating time delay for definite time curve
3	27P_Str_Ph_Num	1/2/3	-	-	1	Number of phases required for operate activation:1 for 1 phase, 2 for 2 phases, 3 for 3 phases
4	27P_Op_Curve_Typ e	0~5	-	-	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT
5	27P_T_ Mult	0.050~200.000	-	0.001	1.000	Time multiplier in IEC curves
6	27P_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time delay for IDMT curves
7	27P_Alpha	0.000~3.000	-	0.001	1.000	constant α of 27P
8	27P_C	0.000~10.000	-	0.001	0.000	constant C of 27P
9	27P_K	0.001~100.000	-	0.001	1.000	constant K of 27P
10	27P_Vol_Opt	0/1	-	1	0	Parameter to select phase or phase-to- phase voltages: 0 forphase voltages,1 forphase-to- phase voltages
11	27P_VTS_Blk_Ena	0/1	-	1	0	undervoltage protection can be blocked due to VT circuit failure if the setting 27P_VTS_Blk_Ena is

No.	Name	Values (Range)	Unit	Step	Default	Description		
						set as "1".		
						undervoltage protection can be		
						blocked when the corresponding		
12	27P_I_Blk_Ena	0/1	-	1	0	busbar has no current if the		
						setting 27P_I_Blk_Ena is set as		
						"1".		
						Logic setting of enabling/disabling		
						undervoltage protection for alarm		
13	27P_Alm	0/1	-	1	1	1 1	1	purpose
						0: disable		
						1: enable		
14	27P_Ena	0/1	-	1	0	Operation Off/On		

4 Supervision Functions

4.1 Overview

Though the protection system is in non-operating state under normal conditions, it is waiting for a power system fault to occur at any time and must operate for the fault without fail.

When the equipment is in energizing process, the equipment needs to be checked to ensure there are no errors. Therefore, the automatic supervision function, which checks the health of the protection system during startup and normal operation procedure, plays an important role.

The numerical relay based on the microprocessor operations has the capability for implementing this automatic supervision function of the protection system.

In case a fatal fault is detected during automatic supervision, the equipment will be blocked out. It means that this relay is out of service. Therefore you must re-energize the relay or even replace a module to make this relay back into service.

4.2 Supervision Alarm and Block

The relay device has powerful real-time self-check capability. The device will automatically check its own software and hardware running state during the process of operation. If there is any abnormal situation, the abnormal information will be displayed on the LCD, and the corresponding indicator and signal relay will issue prompt. Besides, these abnormal self-check and alarm signal can be uploaded to the SCADA through the IEC 61850 or IEC 60870-103 communication protocol.

Self-check scope of the device is as follows:

- 1. Self-check about the hardware:
 - Alarm signal of analog quantity circuit self-check
 - Alarm signal of BI circuit self-check
 - Alarm signal of BO circuit self-check
 - Alarm signal of storage self-check
- 2. Self-check about the software and configuration
 - Alarm signal of software running state self-check
 - Alarm signal of configuration self-check
 - Alarm signal of internal communication self-check
- 3. Self-check about the external communication
 - Alarm signal of external communication self-check

If the relay device is in abnormal status, alarm signal will be issued. Some alarm signals will block the protection function, while some will not. The detailed information is shown as the following table.

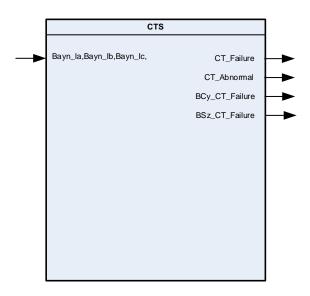
Alarm Signal Name	Description
Kernel Comm Abn	Some abnormality happen to the internal communication.
Databus Comm Intr	Databus communication is interrupted.

Table 4.2-1 Trip Blocking Signal

Alarm Signal Name	Description
Databus Data Abn	Some abnormalityhappen to the databus.
LVDSIO Input Err	LVDSIO fails to Read BI.
LVDSBus SelfChk Abn	LVDS databus is self-detected as abnormal.
RAM Scan Err	Some abnormality are found when the RAM is under scan.
Sys Const SelfChk Abn	The system constant is self-detected as abnormal.
SelfChk Comp Port Err	The communication port isself-detected as abnormal.
SelfChk Comp Cfg Err	The communication configuration isself-detected as abnormal.
Setting SelfChk Err	The setting CRC code isself-detected as abnormal.
Soft Sw SelfChk Err	The soft switch CRC code isself-detected as abnormal.
BO Cfg SelfChk Err	The KO configuration file CRC code isself-detected as abnormal.
BO Cfg CRC Err	The KO configuration file CRC code is unmatched.
Para SelfChk Err	The parameter CRC code isself-detected as abnormal.
Prot Comp RAM Scan Err	Some abnormality are found when the BO RAM is under scan.

Table 4.2-2 Supervision Alarm Signal

Alarm Signal Name	Description
Databus LongTime Losing Syn	The databus loses synchronization for a long time.
Databus Wrong Syn Alarm	Some abnormality happens to the databus synchronization.
A/D Sampling Err	A/Dmodule sampling is abnormal.
IRIG-B Syn Abn	IRIG-B synchronization is abnormal.
Mana Bus Comm Intr	Management databus communication is interrupted.
Set CRC Err	The setting CRC code is unmatched.
Soft Sw CRC Err	The soft switch CRC code is unmatched.
Para CRC Err	The parameter CRC code is unmatched.
Main Cfg Check Abn	Themain configuration file isabnormal.
Cfg File Check Abn	The configuration file isabnormal.
Comp Cfg Check Err	Thecommunication configuration file isself-detected as abnormal.
WaveRcd Cfg File Abn	Thedisturbance configuration file isabnormal.
WaveRcd File Abn	The disturbance file isabnormal.


4.3 CT Circuit Supervision CTS

4.3.1 Overview

The CTcircuit supervision CTS is todetecttheopen circuitoccuring in the secondary circuits between current transformers and IED.Differential current of discriminating zone would appear immediately when BC/BS CT fuseis openned. Furthermore, the faulty current transformer corresponding to a feeder can produce differential current in check zone, which will cause maloperation of the current related protection (87B). The IED detecting such a condition issues respective alarm report and blocks related protection. What is important, it is possible to block 87B when a CT open circuit is detected.

4.3.1.1 Function Block

4.3.1.2 Signals

Table 2.9-1CTSOutput Signals

NO.	Signal Description	
1	CT_Abnorm	CT circuit abnormality.
2	2 CT_Failure CT circuit failure.	
3	BCy/BSz_CT_Failure	BCy/BSz CT circuit failure.

4.3.2 Protection Principle

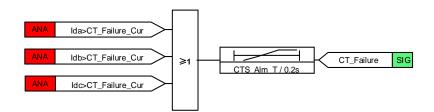
4.3.2.1 CT Circuit Failure

During normal operation, the check zone differential current should be zero or negligible, but if the secondary circuit of a CT becomes open circuited, the check zone differential current will result.

An alarm CT_Failure will be issued with a time delay of the setting CTS_Alm_T if the check zone differential current is larger than the setting CT_Failure_Cur and the supervision element of 87B does not pick up.The alarmwill be reset automatically with a time delay of 0.2s after the CT circuit returns to normal.87B will be blocked in phase-segregated when CT circuit is failure.

4.3.2.2 CT Circuit Abnormality

An alarm CT_Abnormwill be issued with a time delay of the setting CTS_Alm_T if the check zone differential current is larger than the setting CT_Abnorm_Cur and the supervision element of 87B does not pick up.The alarmwill be reset automatically with a time delay of 0.2s after the CT circuit returns to normal.87B will not be blocked when CT circuit is abnormal.


4.3.2.3 BC/BS CT Circuit Failure

If the check zone differential current is smaller than the setting which fixed as 0.06In, and both discriminating zone differential currents of the twoconnected busbars are larger than 0.06In, BC/BS CT circuit failure alarm signal BCy\BSz_CT_Failure will be issued with a time delay of 3s, Under this situation, if any internal fault occurs , the device will tirp BC/BS first and then the discriminating

zone will be tripped after 100ms.

4.3.3 Logic

The logic of CTS is shown as follows:

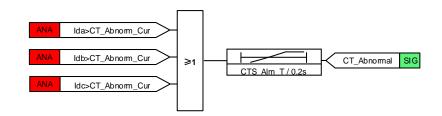


Figure 4.3.2 Logic Block Diagram of CT Circuit Abnormality

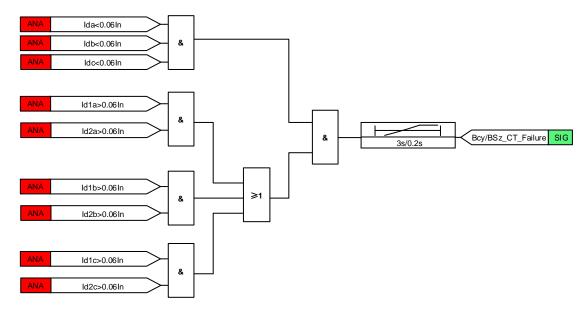
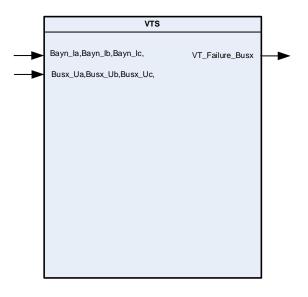


Figure 4.3.3 Logic Block Diagram of BC/BS CT Circuit Failure

4.3.4 Settings

Table 4.3.1 CTS Settings

Name	Values (Range)	Unit	Step	Default	Description
CT_Abnorm_Cur	0.05ln~20ln	A	0.01A	20In	The threshold of CT circuit abnormality.


Name	Values (Range)	Unit	Step	Default	Description
CT Failure Cur	0.05ln~20ln	А	0.01A	20In	The threshold of CT circuit
			failure.		
					Time delay of CT circuit
CTS_Alm_T	3.000~10.000	S	0.001s	3.000	abnormality and CT circuit
					failure

4.4 VT Fuse Failure Supervision VTS

4.4.1 Overview

The aim of the fuse failure supervision function is todetect fault occurs in the secondary circuits between voltage instrument transformers and IED and issues alarm signal.

4.4.1.1 Function Block

4.4.1.2 Signals

Table 4.4.1 VTS Output Signals

NO.	Signal	Description
1	VT_Failure_Busx	Alarm signal indicate that VT circuit fuse failure of busbar x.

4.4.2 Protection Principle

If busbar x(x=1,2,3) is inservice and the 87B_VBE element picks up, an alarm VT_Failure_Busx will be issued with a time delay of setting VTS_AIm_T. When the three phase-voltage returns to normal condition, the alarm will be reset automatically with a time delay of 0.1s.The voltage and current criteria of this function are calculated in bus-segregated.

4.4.3 Logic

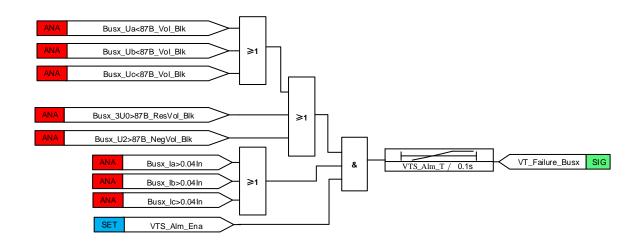


Figure 4.4.1 Logic Block Diagram of VTS

Where:

- Busx_ U_a : Phase-A voltage of busbar x(x=1,2,3).
- Busx_ U_b : Phase-B voltage of busbar x(x=1,2,3).
- Busx_ U_c : Phase-C voltage of busbar x(x=1,2,3).
- Busx_ $3U_0$: Residual voltage of busbar x(x=1,2,3)(calculated internally).
- Busx U_2 : Negative voltage of the busbar x(x=1,2,3)(calculated internally).
- Busx_ I_a :Phase-A current of any bay connected to busbar x(x=1,2,3).
- Busx_ I_b :Phase-B current of any bay connected to busbar x(x=1,2,3).
- Busx_I_c:Phase-C current of any bay connected to busbar x(x=1,2,3).

4.4.4 Settings

Name	Values (Range)	Unit	Step	Default	Description
VTS_Alm_T	0.100~10.000	s	0.001s	9.000	Time delay of VT fuse failure.
VTS_Alm_Ena	0/1	-	1	0	Enabling or disabling VT fuse failure supervision.

Table 4.4.2 VTS Settings

5 Monitoring and Control

5.1 Overview

Besides the protection and supervision functions, the relay provides some other auxiliary functions, such as protection and metering measurement quantities sampling, remote control, BI signaling, event recording and fault & disturbance recording etc. All these sub-functions are integrated components to fulfill the protection and control functions of the device.

5.2 Measurement

The general measurement quantities include both directly sampling and calculated quantities. These quantities are generally used for protection analyzing and metering calculation. All these quantities can be displayed in the local HMI or transmitted to the PRS IED Studio, SCADA or dispatching center through network communication.

Through the PRS IED Studio configuration tool, the measurement channels in the transformer module can be flexibly connected to any measurement quantity according to the designing requirements.

5.2.1 Protection Sampling

The protection sampling rate is 40 points per cycle. Different protection logics use different measurement quantities, including the RMS value, the phase angle, the frequency, the harmonic content, the sequence components and so on. All these protection sampled values are displayed in HMI with 0.5s updateing rate.

5.2.2 Metering

The metering rate is 40 points per cycle. Different functions, such as controlling, monitoring and metering, use different measurement quantities, including the RMS value, the phase angle, the frequency, the harmonic content, the sequence components and so on. All these metering values are displayed in HMI with 0.5s updateing rate.

5.3 Apparatus Control

The apparatus control is a combination of functions which continuously supervise and control the circuit breakers, switches and earthing switches within a bay. The selection and operation command to control an apparatus is given after the evaluation of other functions' conditions such as interlocking, synchrocheck, operator place selection and the external or internal blockings.

The commands to an apparatus can be initiated from the local self-customized BI, the station HMI or the dispatching center. The local control self-customized BI can be configured on the PRS IED Studio. The control operation can be started by the activation of the corresponding BI signal. The remote control command can be remotely dispatched through the network communication like IEC61850 or DNP. Before executing a remote control command, it is necessary to turn the Local/Remote control switch to the "Remote" position.

CYG

The output relays in the BO module can be configured as output contacts so as to close or trip the apparatus. Each control output can be control with an interlock module (which can be configured through the PRS IED Studio) if the corresponding interlock logic setting (see Section 7.4.3) is set to activation.

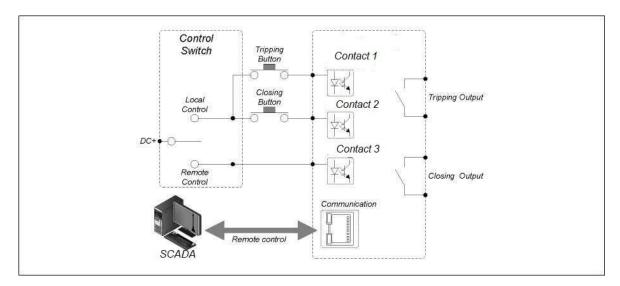


Figure 5.3.1 Demonstration Diagram of The Control Function

5.4 Signaling

This relay has some programmable binary inputs which are used to monitor the contact positions of the corresponding bay, or be used in protection logics or for releasing or blocking the relevant protective element, or be used in supervision logics calculation for supervision alarm elements.

The binary inputs can be configured according to the engineering demands through the PRS IED Studio configuration tool auxiliary software.

The binary input state change confirmation time of each binary input is configurable according to practical application through the PRS IED Studio configuration tool auxiliary software, and the default binary input state change confirmation time of the binary inputs is 10ms.

5.5 Event Recording

This relay supports the event recording functions which can record all the events happened in this relay. So it is very convenient for the user to view the history records.

The following event information can be recorded.

- 512 latest protection operation reports
- 512 latest supervision alarm records
- 128 latest control operation records
- 128 latest user operation records

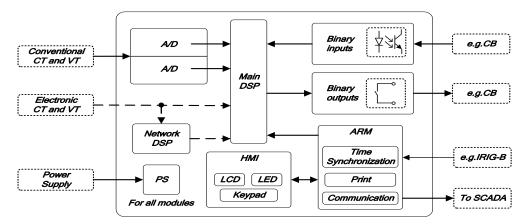
• 2000 latest reports of time tagged sequence of event (SOE)

5.6 Fault and Disturbance Recording

This relay provides the fault and disturbance recording facility for recording the sampled values of the fault and disturbance wave when a fault is occurred in the power system. The 64 latest fault and disturbance records can be recorded in this relay, and each wave record includes up to 10000 fault sampled points (24 sampled points per cycle).

The current and voltage sampled values, the binary input signals and the protection operation signals are contained in the fault and disturbance wave record, and the analog value sampling rate is 24 points per cycle. The format of the wave complies with the "COMTRADE" standard.

Each waveform includes the wave recording data both before and after the fault. Each trigger element operation will extend the wave recording time, until the appointed time delay is over after the trigger element restores, or until the maximum number of wave recording points is reached.


CYG

6 Hardware

6.1 Overview

The modular design structure of this relay enables a qualified commissioning technician to easily check and locate the damaged hardware modular, so as to eliminate the fault in the very first time. The hinged front panel allows easy access to the HMI modules and the back-plugging design makes it easy to upgrade, maintain or replace any module.

There are several types of hardware modules in this relay, which play different roles in the practical application. The specific modules can be configurated flexibly according to the practical engineering demands.

The overall hardware designing frame of this relay is shown as below.

Figure 6.1.1 Hardware Frame of This Relay

The following figures show the front panel and the rear panel of 1/1 19" case.

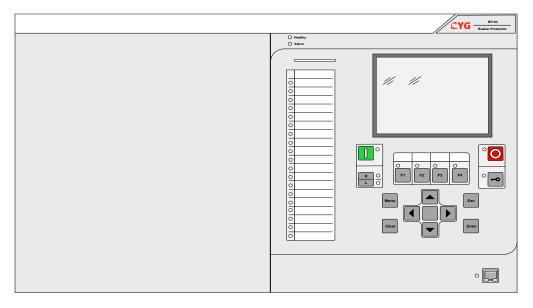


Figure 6.1.2 1/1 19" case front panel of this relay

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0				
CPU	AD	AD	AI	AI	AI	AI	ві	ві	ві	ы	BI	BI	во	во	PWR
								0 01 0 02 0 03 0 03 0 04 0 05 0 05 0 04 0 05 0 04 0 05 0 05 0 04 0 05	0 0	0 0	0 10 0 12 0 13 0 0 12 0 13 0 15 0 0 12 0 0 12 0 13 0 16 0 12 0 0 12 0 13 0 16 0 17 18 0 16 0 12 0 13 0 16 0 16 0 16 0 16 0 13 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 0 16 0	2 0 0 4 0 0.2 4 0 0.2 4 0 0.2 5 0 0.7 6 0 0.7 6 0 0.7 6 0 0.7 6 0 0.7 6 0 1.2 6 0 1.2 6 0 1.2 6 0 1.2 7 0 1.2 7 0 1.2 7 0 1.2 7 0 1.2 7 0 1.2 7 0 1.2 8 0 1.2	2 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 10 2 0 1 12 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 3 0 1 1 3 0 1 1 4 0 1 1		
								0 19 0 20 0 21 0 22 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 3 0 3		COOOOOOOOOOOOOOO Saaaaaaaaaaaaaaaaaaa	 C /ul>		0 19 0 20 0 21 0 22 0 22 0 22 0 22 0 23 0 23 0 24 0 25 0 28 0 29 0 31 0 34 0 36 0 36 0 36	K K	

Figure 6.1.3 1/1 19" case real panel of this relay

NOTICE!

The hardware module configuration in the above figure is only for demonstrating one kind of typical configuration. Most oftenly, the configuration have to be modified in most of the project. The hardware module configuration of a practical engineering should be modified based on the practical designing requirement.

6.2 Hardware Module

The BP-2C is comprised of randomly coordinated modules, except that a few particular modules, eg., PWR module, CPU module and HMI module, cannot be replaced in the whole device. The other modules, including TF(current or voltgage transformer) module and IO (input and output) module, can be flexibly configured and then placed in the remained slots. The TF module includes AC current transformer, AC voltage transformer, DC current transformer and etc. The IO (input and output) module includes binary input, tripping output, signal output and etc.

No.	ID	Module description	Remark
4	SR7910(1/2 19")	l luman machina interface madula (l INA) madula)	a ta u da u d
I I	SR7900(1/1 19")	Human machine interface module (HMI module)	standard
2	SR7601	Power supply module (PWR module)	standard
3	SR7260	Protection calculation module (CPU module)	standard
4	SR7270	AD conversion(AD module)	standard
5	SR7100	Analog input module (Al module)	standard
6	SR7330	Binary input module (BI module)	standard
7	SR7300	Binary output module (BO module)	standard
8	SR7302	Binary output module (BO module)	standard
9	SR7310	Binary input/output module(IO module)	standard

Table	6.2.1	Module	Configuration
Table	0.2.1	Module	Configuration

6.3 Human Machine Interface Module

The human machine interface (HMI) module is installed behind the front panel of this device. It contains an LCD screen to modify the protection settings and system parameters and display informations of this device, including the analogue quantities, the running status and event lists.

The menus are showed as tree sturcture, which facilitates the users to enter any specific menu. After entering the menu, the big LCD show all the relevant information in one screen, making it easier to get all the information.

6.4 Power Supply Module

The power supply module contains a small voltage converter with enough electrical insulation between the converter and the input/output terminals. A wide range input voltage is provided due to the sophisticated circuit design. The the output voltage from the voltage converter are continuously monitored to ensure the stability and safety.

The power supply module provides 10 binary outputs, some dry contacts, which conduct the signal functions showing the operating conditions (device error) or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable.

Except for the Dev_Err Cls and Dev_Err Open output contacts (fixed as indication output contacts), all the other binary inputs or outputs can be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and PWR module.

The frame of all the power supply module terminal are shown below.

	P۷	VR	
01	POW(+)	BO06 Open	17
02	POW(-)	BO07 Common	18
03	Dev_Err Common	BO07 Open	19
04	Dev_Err Cls	BO07 Cls	20
05	Dev_Err Open	BO08 Common	21
06	BO01 Common	BO08 Open	22
07	BO01 Open	BO08 Cls	23
08	BO02 Common	BO09 Common	24
09	BO02 Open	BO09 Open	25
10	BO03 Common	BO09 Cls	26
11	BO03 Open		27
12	BO04 Common		28
13	BO04 Open		29
14	BO05 Common		30
15	BO05 Open		31
16	BO06 Common		32

Figure 6.4.1 Frame of the Power Supply Module Terminals

The specific terminal definition of the connector is described as below.

Table 6-2 Terminal Definition and Description of PWR Module

Name	Description
POW+	Positive input of power supply for the device.
POW-	Negative input of power supply for the device.
Dev_Err Common	Device abnormality alarm common terminal.
Dev_Err Cls	Device abnormality alarm normal close terminal.
Dev_Err Open	Device abnormality alarm normal open terminal.
BO01	The No.1 programmable tripping and closing binary output.
BO02	The No.2 programmable tripping and closing binary output.
BO03	The No.3 programmable tripping and closing binary output.
BO04	The No.4 programmable tripping and closing binary output.
BO05	The No.5 programmable tripping and closing binary output.
BO06	The No.6 programmable tripping and closing binary output.

Name	Description
BO07	The No.7 programmable signal, tripping and blocking binary output.
	Normal open and close contacts are both equipped.
BO08	The No.8 programmable signal, tripping and blocking binary output.
BOUo	Normal open and close contacts are both equipped.
DO00	The No.9 programmable signal, tripping and blocking binary output.
BO09	Normal open and close contacts are both equipped.

6.5 Main CPU Module

The main CPU module, containing powerful microchip processors and some necessary electronic accessories, is the core part of this relay. This powerful processor excecute all the functions of the relay and conduct the commands, including the protection logics, the control function and the internal and external information interfacing functions.

A high-accuracy crystal oscillator is installed on the module as well, ensuring the relay to operate exactly based on the accurate current time.

The main functions of the main CPU module includes as below:

• Sampling information processing

The values of each sampling point will be stored and then sent to different processing module for different function, including display, calculation, communication.

The values of each binary IO contacts will also be stored and then sent to different processing module for different function, including display, calculation, communication.

• Protection, measuring and metering quantities calculation

The CPU module can calculate all the relevant quantities (zero sequence current and voltage, negative sequence current and voltage) on the basis of the directly sampling quantities (phase-to-earth voltages and currents, phase-to-phase voltages and currents) and binary inputs. After the calculation, all the quantities are sent to the protection function module or control module to decide whether the relevant dry contacts trip or close.

• Communication management

The CPU module can effectively excecute all communication procedures parallelly and reliably interface coded messages through the selected communication interfaces. These interfaces are usually used to communicate with a SCADA or a Station Gateway throuth a switcher. The CPU module is also responsible for information exchanging with the HMI module. If any monitoring conditon changes or any event occurs (SOE, protection tripping event, device abnormality), this module will send out the relevant event information to all relevant receivers, so as to ensure a first time alarm to notice the users.

Auxiliary calculations

Besides all the quantities metioned above, the CPU module can also calculate the metering values, such as active power, reactive power and power factor, etc., to provide overall

monitoring information. All these quantities can be sent to a SCADA or a Station Gateway throuth a switcher.

• Time Synchronization

The module provides an interface to receive time synchronized signals from external clock synchronization source. This module also has a local crystal oscillator to maintain the internal time accuracy when outside synchronization source breaks down. The synchronization mode includes PPS (pulse per second) mode and IRIG-B mode. Basing on the outside timing message (from SCADA or Station Gateway) or the PPS signal or the IRIG-B signal, this module can adjust its time within the timing accuracy.

The frame of the CPU module terminal is described as below.

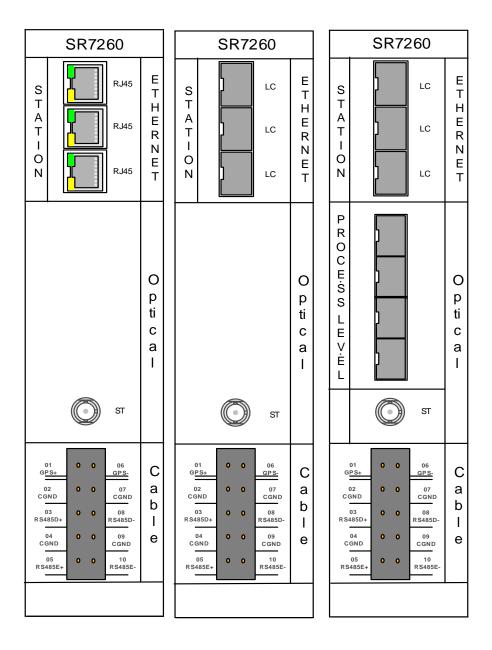


Figure 6.5.1 Frame of Main CPU Module

6.6 AD module

The module consists of a 16-bit high-accuracy AD converter which converters the sampling analog quantities to digital signals channel by channel. After the quick converter, all the digital signals are transmitted to microchip processors for latter application.

6.7 Transformer Module

The transformer module can decrease the high input analog values to relevant low output analog values as to the small transformer ratio, acting as an effective isolation between the relay and the power system. The low output analog values, within the range of the AD module after the conversion, are sent to the AD module for further processing. A low pass filter circuit is used to reduce the noise of each analog channel.

The frame of four transformer modules of different specifications are shown below. The first transformer module consists of 6 voltage channels and 6 current channels. The second one consists of 9 voltage channels and 3 current channels. The third one consists of 12 current channels. The fourth one consists of 6 voltage channels and 8 current channels. The current terminal will be automatically short circuited when it is pluged out.

	TF1: 6	6U+6I	SI TF2: 9U+3I				TF3: 12I					TF1: 6U+8I					
			_					-									
01	Ua	Ub	02	C	01	U1a	U1a'	02	01	l1	I1'	02		01	Ua	Ub	02
03	Uc	Un	04	C	03	U1b	U1b'	04	03	12	12'	04		03	Uc	Un	04
05	U1	U1n	06	C	05	U1c	U1c'	06	05	13	13'	06		05	U1	U1n	06
07	U2	U2n	08	C	07	U2a	U2a'	08	07	14	14'	08		07	U2	U2n	08
09	U3	U3n	10	C	09	U2b	U2b'	10	09	15	15'	10		09	U3	U3n	10
11	la	la'	12	1	11	U2c	U2c'	12	11	16	l6'	12		11	la	la'	12
13	lb	lb'	14	1	13	U3a	U3a'	14	13	17	17'	14		13	lb	lb'	14
15	lc	lc'	16	1	15	U3b	U3b'	16	15	18	18'	16		15	lc	lc'	16
17	Ion	lon'	18	1	17	U3c	U3c'	18	17	19	19'	18		17	Ion	lon'	18
19	11	I1'	20	1	19			20	19	I10	I10'	20		19	11	11'	20
21	12	12'	22	2	21	la	la'	22	21	l11	I11'	22		21	12	12'	22
23			24	2	23	lb	lb'	24	23	l12	I12'	24		23	13	13'	24
25			26	2	25	Ic	lc'	26	25			26		25	14	14'	26
		-															•

Figure 6.7.1 Transformer Module of Tour Different Specifications

DANGER!

NEVER allow the secondary side of the current transformer (CT) to be opened while the primary apparatus is energized. The opened CT secondary circuit will produce a extremely high voltage and high heat. Although the current terminal will be automatically short circuited when it is pluged out, the safety precaution should be obeyed in order to prevent severe personal injury, person death or considerable equipment damage.

The terminal definition of the connector is described in the below diagram.

Name	Description
U1a	
U1b	The three voltage input channels with inner star connection (Y) for
U1c	protection and metering.
U1n	
U2a	
U2b	The three voltage input channels with inner star connection (Y) for
U2c	protection and metering.
U2n	
U3a	
U3b	The three voltage input channels with inner star connection (Y) for
U3c	protection and metering.
U3n	
la	
la'	
lb	The three phase current inputs
lb'	The three phase current inputs .
lc	
lc'	

Table 6-3 Terminal Definition and Description of TF Module 1

Table 6-4 Terminal Definition and Description of TF Module 2

Name	Description
Ua	
Ub	The three voltage input channels with inner star connection (Y) for
Uc	protection and metering.
Un	
U1	The phase values invote of line 4 few weeks stick and westering
U1n	The phase voltage inputs of line1 for protection and metering.
la	
la'	
lb	The three phase current inputs .
lb'	

Name	Description	
lc		
lc'		
In	The zero converge durrent inpute	
In'	The zero sequence current inputs .	
l1	The phase surrent inputs of line1	
I1'	The phase current inputs of line1.	
12		
12'	The phase current inputs of line2.	
13	The phase surrent inputs of line?	
13'	The phase current inputs of line3.	
14		
14'	The phase current inputs of line4.	

Table 6-5 Terminal Definition and Description of TF Module 3

Name	Description	
11	The phase surrent inputs of ling1	
I1'	The phase current inputs of line1.	
12	The phase current inputs of line2.	
12'	The phase current inputs of line2.	
13	The phase surrent inputs of line?	
13'	The phase current inputs of line3.	
14	The phase surrent inputs of line4	
14'	The phase current inputs of line4.	
15	The phase surrent inputs of line5	
15'	The phase current inputs of line5.	
16		
I6'	The phase current inputs of line6.	
17	The phase surrent inputs of line7	
17'	The phase current inputs of line7.	
18	The phase surrent inputs of line 9	
18'	The phase current inputs of line8.	
19	The phase current inputs of line9.	
19'	The phase current inputs of lines.	
l10		
I10'	The phase current inputs of line10.	
l11	The phase current inputs of line 11	
I11'	The phase current inputs of line11.	
l12	The phase current inputs of line12.	
l12'		

Name	Description		
Ua			
Ub	The three voltage input channels with inner star connection (Y) for protection and metering.		
Uc			
Un			
U1	The phase veltage inputs of line 1 for protection and metaring		
U1n	The phase voltage inputs of line1 for protection and metering.		
U2	The phase voltage inputs of line? for protection and matering		
U2n	The phase voltage inputs of line2 for protection and metering.		
U3	The phase voltage inputs of line? for protection and metering		
U3n	The phase voltage inputs of line3 for protection and metering.		
la			
la'			
lb	The three phase surrent inputs		
lb'	The three phase current inputs .		
lc			
lc'			
In			
ln'	The zero sequence current inputs .		
11	The phase surrent inputs of line1		
11'	The phase current inputs of line1.		
12	The phase current inputs of line?		
12'	The phase current inputs of line2.		
13	The phase current inputs of line?		
13'	The phase current inputs of line3.		
14	The phase current inputs of line4.		
14'			

Table 6-6 Terminal Definition and Description of TF Module 4

6.8 Binary Input Module

The BI module contains 18 binary inputs, the optical isolated input terminals, which can perform different monitoring functions, such as detecting the breaker and switch positions of the corresponding bay. All the BI terminals can be used as general purpose binary inputs or special purpose (protection function or control function) binary inputs. For example, the general purpose binary inputs can be used to indicate the status (0 for normal condition and 1 for abnormal condition) of a certain apparatus. For another example, the special purpose binary inputs can be used to acting as the blocking or start signal for a certain protection function.

All the binary inputs can be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BI module.

The frame of the BI module terminal is described as below.

	INPUT			
01	BI01+	BI10+	17	
02	BI02+	BI11+	18	
03	BI01~02 Common-	BI10~11 Common-	19	
04	BI03+	BI12+	20	
05	BI04+	BI13+	21	
06	BI03~04 Common-	BI12~13 Common-	22	
07	BI05+	BI14+	23	
08	BI05-	BI14-	24	
09	BI06+	BI15+	25	
10	BI06-	BI15-	26	
11	BI07+	BI16+	27	
12	BI07-	BI16-	28	
13	BI08+	BI17+	29	
14	BI08-	BI17-	30	
15	BI09+	BI18+	31	
16	BI09-	BI18-	32	

Name	Description	
BI01+		
BI02+	The No.1 and No.2 programmable binary input.	
BI01~ BI02-		
BI03+		
BI04+	The No.3 and No.4 programmable binary input.	
BI03~ BI04-		
BI05+	The No.5programmable binary input.	

Name	Description	
BI05-		
BI06+	The Ne 6 programmable binany input	
BI06-	The No.6 programmable binary input.	
BI07+	The No.7 programmable binary input.	
BI07-	The No.7 programmable binary input.	
BI08+	The No.8 programmable binary input.	
BI08-	The No.6 programmable binary input.	
BI09+	The No.9 programmable binary input.	
BI09-	The No.9 programmable binary input.	
BI10+	The No.10 and No.11 programmable binary input.	
BI11+		
BI10~ BI11-		
BI12+		
BI13+	The No.12 and No.13 programmable binary input.	
BI12~ BI13-		
BI14+	The No.14programmable binary input.	
BI14-		
BI15+	The No.15 programmable binary input.	
BI15-		
BI16+	The No. 16 programmeble binery input	
BI16-	The No.16 programmable binary input.	
BI17+	- The No.17 programmable binary input.	
BI17-		
BI18+	- The No.18 programmable binary input.	
BI18-		

6.9 Binary Output Module(SR7300)

The BO module consists of 14 binary output,dry contacts, which conduct the signal functions showing the operating conditions or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable. All the contacts can independently receive tripping or closing commands from the main CPU module and then conduct these commands.

All the binary outputscan be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BO module.

The frame of the BO module terminal is described as below.

	Output			
01	BO01 Comon	BO09 Comon	17	
02	BO01 Open	BO09 Open	18	
03	BO02 Comon	BO10 Comon	19	
04	BO02 Open	BO10 Open	20	
05	BO03 Comon	BO11 Comon	21	
06	BO03 Open	BO11 Open	22	
07	BO04 Comon	BO11 Cls	23	
08	BO04 Open	BO12 Common	24	
09	BO05 Comon	BO12 Open	25	
10	BO05 Open	BO12 Cls	26	
11	BO06 Comon	BO13 Comon	27	
12	BO06 Open	BO13 Open	28	
13	BO07 Comon	BO13 Cls	29	
14	BO07 Open	BO14 Common	30	
15	BO08 Common	BO14 Open	31	
16	BO08 Open	BO14 Cls	32	

Figure 6.9-1 Frame of BO Terminal

Table 6-8 Terminal Definition and Description of BO Module

Name	Description		
BO1	The No.1 programmable tripping and closing binary output.		
BO2	The No.2 programmable tripping and closing binary output.		
BO3	The No.3 programmable tripping and closing binary output.		
BO4	The No.4 programmable tripping and closing binary output.		
BO5	The No.5 programmable tripping and closing binary output.		
BO6	The No.6 programmable tripping and closing binary output.		
BO7	The No.7 programmable signal output.		
BO8	The No.8 programmable signal output.		
BO9	The No.9 programmable signal output.		
BO10	The No.10 programmable signal output.		
BO11	The No.11 programmable signal output. Normal open and close contacts		
	are both equipped.		

Name	Description		
BO12	The No.12 programmable signal output. Normal open and close contacts		
	are both equipped.		
BO13	The No.13 programmable signal output. Normal open and close contacts		
	are both equipped.		
BO14	The No.14 programmable signal output. Normal open and close contacts		
	are both equipped.		

6.10 Binary Output Module(SR7302)

The BO module consists of 16 binary output, dry contacts, which conduct the signal functions showing the operating conditions or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable. All the contacts can independently receive tripping or closing commands from the main CPU module and then conduct these commands.

All the binary outputscan be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BO module.

The frame of the BO module terminal is described as below.

	Output			
01	BO01 Comon	BO09 Comon	17	
02	BO01 Open	BO09 Open	18	
03	BO02 Comon	BO10 Comon	19	
04	BO02 Open	BO10 Open	20	
05	BO03 Comon	BO11 Comon	21	
06	BO03 Open	BO11 Open	22	
07	BO04 Comon	BO12 Common	23	
08	BO04 Open	BO12 Open	24	
09	BO05 Comon	BO13 Comon	25	
10	BO05 Open	BO13 Open	26	
11	BO06 Comon	BO14 Common	27	
12	BO06 Open	BO14 Open	28	
13	BO07 Comon	BO15 Common	29	
14	BO07 Open	BO15 Open	30	
15	BO08 Common	BO16 Common	31	
16	BO08 Open	BO16 Open	32	

Figure 6.10-1 Frame of BO Terminal

Table 6-9 Terminal Definition and Description of BO Module

Name	Description
BO1	The No.1 programmable tripping and closing binary output.
BO2	The No.2 programmable tripping and closing binary output.
BO3	The No.3 programmable tripping and closing binary output.
BO4	The No.4 programmable tripping and closing binary output.
BO5	The No.5 programmable tripping and closing binary output.
BO6	The No.6 programmable tripping and closing binary output.
BO7	The No.7 programmable tripping and closing binary output.
BO8	The No.8 programmable tripping and closing binary output.
BO9	The No.9 programmable tripping and closing binary output.
BO10	The No.10 programmable tripping and closing binary output.
BO11	The No.11 programmable tripping and closing binary output.
BO12	The No.12 programmable tripping and closing binary output.

Name	Description
BO13	The No.13 programmable tripping and closing binary output.
BO14	The No.14 programmable tripping and closing binary output.
BO15	The No.15 programmable tripping and closing binary output.
BO16	The No.16 programmable tripping and closing binary output.

6.11 Binary Output Module(SR7303)

The BO module consists of 8 binary output relay,dry contacts, with 2 contacts for each relay, which conduct the signal functions showing the operating conditions or tripping and closing commands (protection, auto-recloser or remote control).The specific function is performed by setting the relevant settings and wiring the external copper cable. All the contacts can independently receive tripping or closing commands from the main CPU module and then conduct these commands.

All the binary output relay can be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BO module.

The frame of the BO module terminal is described as below.

	Output		
01	BO01-A Comon	BO01-B Comon	17
02	BO01-A Open	BO01-B Open	18
03	BO02-A Comon	BO02-B Comon	19
04	BO02-A Open	BO02-B Open	20
05	BO03-A Comon	BO03-B Comon	21
06	BO03-A Open	BO03-B Open	22
07	BO04-A Comon	BO04-B Common	23
08	BO04-A Open	BO04-B Open	24
09	BO05-A Comon	BO05-B Comon	25
10	BO05-A Open	BO05-B Open	26
11	BO06-A Comon	BO06-B Common	27
12	BO06-A Open	BO06-B Open	28
13	BO07-A Comon	BO07-B Common	29
14	BO07-A Open	BO07-B Open	30
15	BO08-A Common	BO08-B Common	31
16	BO08-A Open	BO08-B Open	32

Figure 6.11-1 Frame of BO Terminal

Table 6-10 Terminal Definition and Description of BO Module

Name	Description
BO1-A	The No.1 programmable tripping and closing binary output for contact A.
BO1-B	The No.1 programmable tripping and closing binary output for contact B.
BO2-A	The No.2 programmable tripping and closing binary output for contact A.
BO2-B	The No.2 programmable tripping and closing binary output for contact B.
BO3-A	The No.3 programmable tripping and closing binary output for contact A.
BO3-B	The No.3 programmable tripping and closing binary output for contact B.
BO4-A	The No.4 programmable tripping and closing binary output for contact A.
BO4-B	The No.4 programmable tripping and closing binary output for contact B.
BO5-A	The No.5 programmable tripping and closing binary output for contact A.
BO5-B	The No.5 programmable tripping and closing binary output for contact B.
BO6-A	The No.6 programmable tripping and closing binary output for contact A.
BO6-B	The No.6 programmable tripping and closing binary output for contact B.

Name	Description
BO7-A	The No.7 programmable tripping and closing binary output for contact A.
BO7-B	The No.7 programmable tripping and closing binary output for contact B.
BO8-A	The No.8 programmable tripping and closing binary output for contact A.
BO8-B	The No.8 programmable tripping and closing binary output for contact B.

6.12 Binary Input/Output Module

The IO module provides 7 binary outputs, some dry contacts, which conduct the signal functions showing the operating conditions (device error) or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable.

The IO module also contains 9 binary inputs, the optical isolated input terminals, which can perform different monitoring functions, such as detecting the breaker and switch positions of the corresponding bay.All the BI terminals can be used as general purpose binary inputs or special purpose (protection function or control function) binary inputs.

All the binary inputs and outputs can be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BO module.

The frame of the IO module terminal definition is described as below.

	IO		
01	BI01+	BO01 Common	17
02	BI02+	BO01 Open	18
03	BI01~02 Common-	BO02 Common	19
04	BI03+	BO02 Open	20
05	BI04+	BO03 Common	21
06	BI03~04 Common-	BO03 Open	22
07	BI05+	BO04 Common	23
08	BI05-	BO04 Open	24
09	BI06+	BO05 Common	25
10	BI06-	BO05 Open	26
11	BI07+	BO06 Common	27
12	BI07-	BO06 Open	28
13	BI08+	BO06 Cls	29
14	BI08-	BO07 Common	30
15	BI09+	BO07 Open	31
16	BI09-	BO07 Cls	32

Figure 6.12-1Frame of the IO ModuleTerminal

The terminal definition of the IO module is described as below.

Name	Description	
BI01+	The No.1 and No.2 programmable binary input.	
BI02+		
BI01~ BI02-		
BI03+	The No.3 and No.4 programmable binary input.	
BI04+		
BI03~ BI04-		
BI05+		
BI05-	The No.5programmable binary input.	
BI06+	- The No.6 programmable binary input.	
BI06-		
BI07+		
BI07-	The No.7 programmable binary input.	
BI08+		
BI08-	The No.8 programmable binary input.	
BI09+	- The No.9 programmable binary input.	
BI09-		
BO01	The No.1 programmable tripping and closing binary output.	
BO02	The No.2 programmable tripping and closing binary output.	
BO03	The No.3 programmable tripping and closing binary output.	
BO04	The No.4 programmable tripping and closing binary output.	
BO05	The No.5 programmable tripping and closing binary output.	
BO06	The No.6 programmable tripping and closing binary output.Normal open	
	and close contacts are both equipped.	
PO07	The No.7 programmable tripping and closing binary output.Normal open	
BO07	and close contacts are both equipped.	

Table 6-11 Terminal Definition and Description of IO Module

7 Human Machine Interface

7.1 Overview

HMI is known as the Human Machine Interface. HMI is the main communication interface between the control system and the operator. The friendly LCD facilitates the operator, providing all operating system information in the screen of the front display panel, including binary inputs or outputs, circuit breakers status, version of operating system program, alarm signals, tripping operation, disturbance records, and signal of measuring quantities (voltage, current and angle) etc., Besides these, its also useful for modifying the operating system configuration settings and protection function settings as well. The HMI can also be helpful during commissioning work.

Additionally, the PRS IED studio software helps to conduct all above listed function through communication port (Ethernet cable) on the PC or laptop.

7.1.1 Design Structure

The design structural of BP-2C Human Machine Interface (HMI) is user friendly and easy to operate in different situations. The design structure detail of HMI is follow:

- For monitoring the signal status, fault records and configuration of settings, high quality 320×240 dot matrix LCD with dim lite green back light display is equipped.
- For the access of device functions and control settings. 1 enter and 1 cancel keys, 4 functional keys, 4 arrow keys, 2 remote and local control keys and 2 CB control keys.
- For the indication of different types of alarming and tripping signals. Front panel of HMI includes 28 LEDs light indicator.
- For the remote access from the PRS IED studio configuration software, Ethernet commissioning interface is available.

The front and back panels of BP-2C relay shown in figure 6.1.2 and 6.1.3 respectively.

7.1.2 Function mode

- HMI screen is used to monitor the successively status and information of various events, and also helps to configure the protection settings and device operating mode
- Navigation menu keys help the operator to locate the required data or information.
- Data record and printing function is available in BP-2C relay setting.

In simple words, all functions of BP-2C are user friendly.

7.1.3 Operating panel keypad and keys

The BP-2C relay front penal have 9 keypads and 8 function keys help the operator to change the device settings according to the required situation and locate the different kind of data access. These all keys and keypad have different kinds of functions.

Table 7-1 Keys information table

Symbol of keys	Description
	Arrow keys left, right up and down respectively
F1 F2 F3 F4	Functional keys F1, F2, F3 and F4 respectively. These are configure according to user's demand.
Menu Clear Esc Enter	Different keys like Menu, Clear, Esc and Enter keys
	CB close key, Remote/Local control key, User login key and CB opening key respectively.

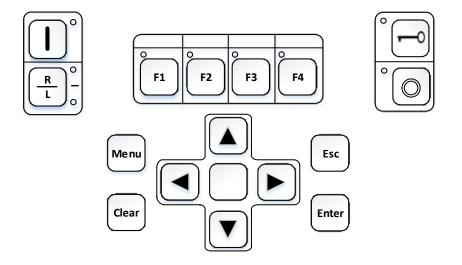


Figure 7.1.1 Overview of Front Panel Keypad and Keys

7.1.4 Indication of LED

The BP-2C device consists of 31 front panel LEDs. The local view of front panel HMI consists of two protection status LEDs above the display level; healthy and alarm. The nineteen other configurable LEDs on the front panel of local-HMI and each LEDs can be configured with three colors like green, red and yellow according to user requirement. These LEDs can be configured through PRS IED Studio. Additionally, nineteen LEDs shows 57 different alarming status.

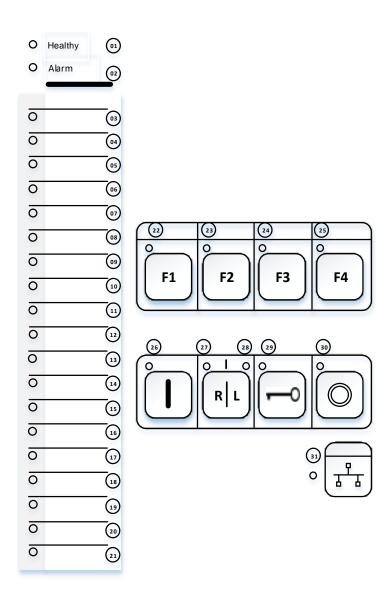


Figure 7.1.2 Overview of Front Panel LED's

Table 7-2 LED indications

No.	Key label	Status	Description
01	Hoolthy	Off	When the device is not energized.
01	Healthy	Green	When the device is in normal working mode and ready to operate
		Off	No alarm signal is energized when the device running normally.
02	Alarm	Yellow	Alarm signal is issued. When any kind of abnormality signal is
		reliow	detected. LED light color is fixed yellow.
		Off	None of signal is energized when the device running normally.
03~21	Configurable		These LEDs can be configured according to user demand like
03~21	Configurable	Green/Yellow/Red	different operating functions, such as tripping, alarm, reclose, CB
			open or close and synchro-check etc.

No.	Key label	Status	Description
		Off	None of signal is energized when the functional key is
22~25	Configurable	Oli	deactivated.
22~25	Configurable	Green/Yellow/Red	These LEDs indicate the functional keys are deactivated and they
		Green/ reliow/Red	can be configured according to user demand.
			None of signal is energized when the functional key is
		Off	deactivated.
26	CB Close		
		Green/Yellow/Red	This LED indicate the CB Close key is activated and it can be
		Green/ Tellow/Red	configured according to user demand.
27	Remote	Off	The operation mode is determined by the BI.
21	Remote	Green/Yellow/Red	The device is in the "remote" mode
28	Local	Off	The operation mode is determined by the BI.
20	LUCAI	Green/Yellow/Red	The device is in the "Local" mode
		Off	When user login function is not enable.
29	User login	Green	When user login function works normally.
		Yellow/Red	When user login function is not working normally.
		Off	None of signal is energized when the functional key is
30	CP Open	Oli	deactivated.
30	CB Open	Green/Yellow/Red	This LED indicate the CB Open key is activated and it can be
		Green/ renow/Red	configured according to user demand.
31	Ethernet	Off	When no Ethernet cable is connected with device.
31	interface port	Green	When it works normally.

> General description of LEDs indication

Healthy

This LED indication shows, device is energized through normal power supply, and ready to work under the normal atmosphere.

Alarm

This LED indication shows, when any abnormality alarm is detected in the system.

Trip

This LED indication shows, when any protection function is operated.

Reclose

This LED indication shows, when auto-recloser function is operated.

CB Open

This LED indication shows, when the circuit breaker is in open position.

CB Close

This LED indication shows, when the circuit breaker is in close position.

7.1.5 Configurable keys

The BP-2C device HMI front panel consists of four configurable keys. These configurable functional keys provide shortcuts for certain menu or act as a control button. The default view of configurable functional keys (F1, F2, F3 and F4) are shown in above figure 7.1.1. The detail operation of functional keys are listed in below table 7.1.3:

Keys	Function	Description	Remarks
	Control	For binary input and output control instantiated according to the configuration tool	This control function, control through three ways like puls, hold and exit.
F1, F2, F3 and F4	Shortcut	"Main menu", "system single line", "event", "measurement", "fault recording", "device status", "clear" 7 selected 1	This shortcut function provide easy access to device operation settings and it is configurable according to user demand.
	Sign out	Do not perform the key function	-

Table 7-3 Information of functional keys

7.2 LCD Diplay description of HMI

7.2.1 Ovierview

In this part of HMI, the detail of LCD display function is described.

7.2.2 Normal display structure of LCD

The normal operating condition of local HMI LCD display structure is shown below in figure 7.2.1.

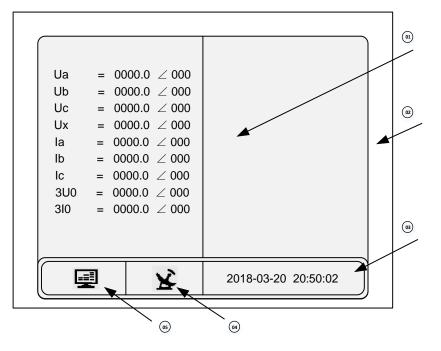


Figure 7.2.1 General Overview Display of Local HMI LCD Screen

According to the overview of local HMI. LCD display is divided into five parts. These parts are listed below:

- 1. Main data display zone
- 2. Outer boundary zone
- 3. Date and time display zone
- 4. Time synchronization or GPS
- 5. Data monitoring zone

Main data display zone provides information that the user wants to access like measurement value status, fault records, circuit breaker status, single line diagrams, alarm signals, protection function settings, and synchronization status etc.

Outer boundary zone is known as free text zone and no data display in this zone. It defines the boundary of LCD display zone.

Date and time display zone shows the real monitoring value of date and time. The user can set these date and time value according to requirement. The display format of date and time is yyyy-mm-dd and hh:mm:ss respectively. The time setting format can be easily set to the user time zone demand.

Time synchronization

Data monitoring zone

7.2.3 Main menu display

In order to make sure the user can control BP-2C relay easier, simple and fast, the CYG Co, Ltd designes a flat-panel of main menu LCD display that contain ten main controlling function.

These controlling function are listed below:

- 1. Physical
- 2. Review
- 3. Monitor
- 4. Event
- 5. Record
- 6. Setting
- 7. CONFIG
- 8. Test
- 9. Clear
- 10. Language

The main menu display screen shown in below figure 7.2.2. The main menu will deal with the operation of installation work together with providing basic support and instructions to help user control.

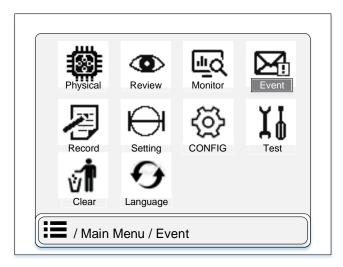


Figure 7.2.2 LCD General Overview Display of Main Menu

7.3 Sub menu functions of main menu

This part of HMI, the detail of menu sub-functions is described. These all sub-functions display on the front panel of HMI LCD.

7.3.1 Physical Information

In this section, describe all the physical information related to device software and device communication. The overview display of physical information is shown in below figure 7.3.1.

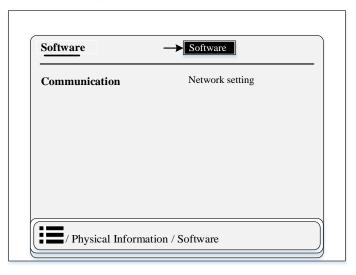


Figure 7.3.1 Overview Display of Physical Information Sub-functions

7.3.1.1 Software

In this sub-section of physical information, the software information of the protection relay is

described, including the device type, protection relay software, uniqueness code and protection date etc. User can access this function through the following path: "Physical information > software". The software information data divided into two pages and the detail of information is listed in below figure 7.3.2 and table 7.3.1:

BP-2C Busbar Protection Device type : BP-2C P-Software ver. : Vx.xx	notaction
	otection
P-Software ver. : Vx.xx	: BP-2C
	: Vx.xx
P-CRC : XXXX	: XXXX
P-Date : yyyy.mm.dd	: yyyy.mm.dd

Figure 7.3.2 Overview Display Diagram of Software Information

Name	Function display	Description
Device type	BP-2C	Discribe the type of protection relay
P-Software ver	Vx.xx	Describe the version of protection relay software
P-CRC	XXXX	Protection Cyclic redundancy check code
P-Date	yyyy-mm-dd	Protection CPU date
M-Software ver.	Vx.xx	MCPU software version
M-CRC	XXXX	MCPU Cyclic redundancy check error
M-Date	yyyy-mm-dd	Management CPU date
S/N	A01-30000000FFFFFFF	

Table 7-4 Detail of Software information

7.3.1.2 Communication

This section, describes the information communication of network setting of the protection relay including IP, MAC and NetMask of network 1, 2 and 3 respectively. User can access this function through the following path: "Physical information > communication". The network setting data of communication information is listed in below figure 7.3.3 and table 7.3.2:

_	Network setting	
Comm Versio	n: V1.00	
Commi (Croro	222.111.112.003	
	00.00.DE.6F.70.03	
NET 1 NetMa	sk : 255.255.255.000	
NET 2 IP:	196.005.001.003	
NET 2 MAC:	00.01.C4.05.01.03	
NET 2 NetMa	sk : 255.255.255.000	
NET 2 IP:	196.005.002.003	
NET 3 MAC:	00.02.C4.05.02.03	
NET 3 NetMa	isk : 255.255.255.000	

Figure 7.3.3 Overview Display Diagram of Network Setting

Table 7-5 Communication data detail

Name	Function display	Description
NET 1 IP	222.111.112.003	IP address of internet protocol for Ethernet port 1
NET 1 MAC	00.00.DE.6F.70.03	MAC address of internet protocol for Ethernet port 1
NET 1 NetMask	255.255.255.000	NetMask address of internet protocol for Ethernet port 1
NET 2 IP	196.005.001.003	IP address of internet protocol for Ethernet port 2
NET 2 MAC	00.01.C4.05.01.03	MAC address of internet protocol for Ethernet port 2
NET 2 NetMask	255.255.255.000	NetMask address of internet protocol for Ethernet port 2
NET 3 IP	196.005.002.003	IP address of internet protocol for Ethernet port 3
NET 3 MAC	00.02.C4.05.02.03	MAC address of internet protocol for Ethernet port 3
NET 3 NetMask	255.255.255.000	NetMask address of internet protocol for Ethernet port 3

7.3.2 Review Information

This section is divided into two sub-parts, including time mode and the information how to review protection relay settings. This section only provides the setting view display and user can't change the display information of relay. The overview display of review information is shown in below figure 7.3.4.

Timing Mode	Timing Mode
Prot Settings	Setting group
0	Prot Settings

Figure 7.3.4 Overview Display of Review Information Sub-functions

7.3.2.1 Timing Mode

This section, the user can see the time information like Uart IRIG-B, Opti IRIG-B and SNTP (Simple Network Time Protocol) information and the user can't change any kind of information. Users can access this function through the following path: "Review > Timing Mode". The overview display of timing mode is shown in below figure 7.3.5.

Timir	ng Mode
Set Timing Mode None SNTP → Uart IRIG-B	Note2
Opti IRIG-B 1588 P2P 1588 E2E	
Review / Timing Mo	de

Figure 7.3.5 Overview Display of Timing Mode

7.3.2.2 Prot Settings

This section is divided into two sub-parts like setting group and protection settings.

1- Setting Group

This sub-section the user can see the information about which group is the current group. There are totally 4 groups.

2- Prot Settings

This section the user can see the different kind of information like public, measurement and protection function operation settings etc. User can access this function through the following path:

"Review > Prot Settings". The information data structure of protection setting is listed in below figure 7.3.6:

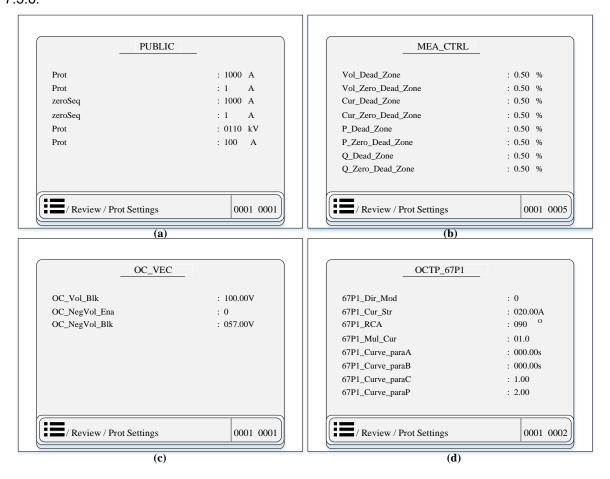


Figure 7.3.6 Overview Diagram of Prot Setting (a) Public Setting (b) Measurement Control Setting (c) Overcurrent Protection Setting (d) Phase Overcurrent Protection Setting of Stage 1

7.3.3 Monitoring Information

This section divided into three sub-parts and describe the information of real time monitoring data of BP-2C busbar protection relay. This section only provides the sample, harmonics and BI data information. In this section user can easily access the real-time monitoring data view of relay through arrow keys. The overview display of monitoring information are shown in below figure 7.3.7.

Sample	Measurements
Harmonic	Harmonic
BI	BI
	D-BI
/ Monitor / Sa	

Figure 7.3.7 Overview Display of Monitoring Information Sub-functions

7.3.3.1 Sample

This section divided into one sub part like measurements and describe the detail information of all measurement values such as current, voltage and angle etc. User can access this function through the following path: "Monitor > Sample". This section contains 01 to 04 pages and 36 measuring quantities. The measurement data structure of relay is listed in below figure 2.3.8 and table 7.3.4:

		Measurements	
→ U1a	=	0000.00V	
U1b	=	0000.00V	
U1c	=	0000.00V	
Ila	=	000.000A	
I1b	=	000.000A	
I1c	=	000.000A	
I2a	=	000.000A	
I2b	=	000.000A	
I2c	=	000.000A	
Ida	=	000.000A	
Idb	=	000.000A	
Idc	=	000.000A	
/ Monit			

Figure 7.3.8 Overview Display of Measurement Section Quantities

Table 7-6	Measurement	quantaties
-----------	-------------	------------

No.	Measurment function	Value (range)	Description
1	U1 _a	0000.00V	Phase A measured voltage of busbar 1
2	U1 _b	0000.00V	Phase B measured voltage of busbar 1
3	U1c	0000.00V	Phase C measured voltage of busbar 1

CYG

No.	Measurment function	Value (range)	Description
4		0000.001/	Dhees A measured values of hushes 2
	U2 _a	V00.000	Phase A measured voltage of busbar 2
5	U2 _b	V00.000	Phase B measured voltage of busbar 2
6	U2c	V00.000	Phase C measured voltage of busbar 2
7	U3 _a	V00.000	Phase A measured voltage of busbar 3
8	U3 _b	V00.000	Phase B measured voltage of busbar 3
9	U3c	V00.000	Phase C measured voltage of busbar 3
10	Ina	000.000A	Phase A measured current of bay n
11	In₀	000.000A	Phase B measured current of bay n
12	In₀	000.000A	Phase C measured current of bay n
13	Ida	000.000A	Phase A measured current of check zone
14	ld₀	000.000A	Phase B measured current of check zone
15	ldc	000.000A	Phase C measured current of check zone
16	ld1a	000.000A	Phase A measured current of discriminative zone 1
17	ld1₅	000.000A	Phase B measured current of discriminative zone 1
18	ld1c	000.000A	Phase C measured current of discriminative zone 1
19	ld2a	000.000A	Phase A measured current of discriminative zone 1
20	ld2₅	000.000A	Phase B measured current of discriminative zone 1
21	ld3c	000.000A	Phase C measured current of discriminative zone 1
22	ld3a	000.000A	Phase A measured current of discriminative zone 3
23	ld3 _b	000.000A	Phase B measured current of discriminative zone 3
24	ld3c	000.000A	Phase C measured current of discriminative zone 3
25	l _{1_n}	000.000A	Positive sequence measured current of bay n
26	l _{2_n}	000.000A	Negative sequence measured current of bay n

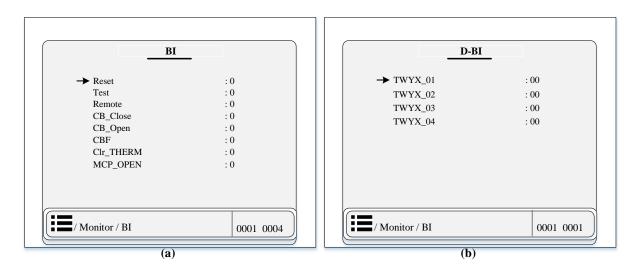
7.3.3.2 Harmonic

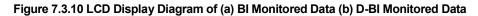
In this section, the user can see the calculated harmonic content data list of all phase voltage and current and also the RMS value of all three phase voltage and current. User can access this function through the following path: "Monitor > Harmonic". The harmonic overview display diagram of relay is listed in below figure 7.3.9. After the measurement channel is selected, the harmonic data of the channel can be viewed.

	Ua Harmonic
Harmonic	$ RMS = 0000.00 V 100\% \\ 01^{st} = 0000.00 V 000\% \\ 02^{nd} = 0000.00 V 000\% \\ 00^{nd} = 0000.00 V 000\% $
Select Channel <u>Ua</u>	$\begin{array}{rcrcrcrcrc} 03^{\rm rd} & = & 0000.00 \ \ \mbox{V} & & 000\% \\ 04^{\rm th} & = & 0000.00 \ \ \mbox{V} & & 000\% \\ 05^{\rm th} & = & 0000.00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Cancel — Enter	
Monitor / Harmonic	Monitor / Harmonic 0001 0004
(a)	(b)

Figure 7.3.9 LCD Display Diagram (a) Overview of Entrance Harmonic Monitoring Chart (b) Ua Harmonic Content Display Chart of Page 1

7.3.3.3 BI


This section divided into two sub-parts and describe the information of binary input (BI) of this IED seen in the above figure 7.3.5. This section only display all the binary input data. User can access this function through the following path: "Monitor > BI".


1- BI

This part of single BI monitoring data contains 01 to 04 pages and 32 binary inputs. The BI display diagram of the IED is listed in below figure 7.3.10 (a):

2- D-BI

D-BI is stand for double binary input function. The D-BI display diagram of relay is listed in below figure 7.3.10 (b):

7.3.4 Event Information

This section is divided into four sub-section and describe the information of all events, like fault

events, alarming information (warning records), selfchk info, SOE, remote control, user records and power records etc. The LCD display event diagram of the IED is listed in below figure 7.3.11:

Port Records —	Fault Events
Alarm Records	Warning Records Selfchk Info
SOE	SOE
Dev Logs	Remote Control User Records Power Records
/ Event / Prot Rrcords	

Figure 7.3.11 Overview Display of Event Information Sub-functions

7.3.4.1 Port Records

This section divided into one sub-function like fault events and this device can store 512 latest protection records. User can access this function through the following path: "Event > Port Records". The detail of this section divided into nine points:

- 1. Shows date and time
- 2. Protection function status
- 3. Shows operation of protection function like which protection function is acted.
- 4. Shows operated phases information
- 5. Shows fault clearance delay time
- 6. Shows slot info like management slot (slot3) or protection slot (slot9).
- 7. Shows fault number
- 8. Not reverted
- 9. Shows fault events page number information, it will be increase or decrease w.r.to numbers of fault.

The diagram of fault event display of relay is listed in below figure 7.3.12:

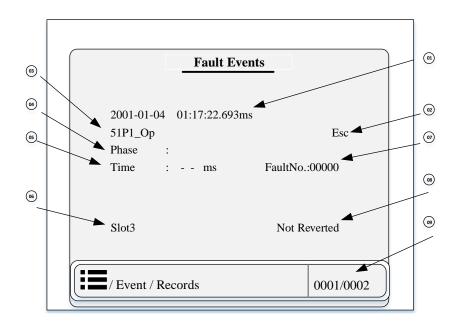


Figure 7.3.12 Overview Display of Fault Events

7.3.4.2 Alarm Records

This section divided into two sub-functions like warning records and selfchk Info see figure 7.3.11. This devise can save latest 512 alarm records.

1- Warning Records

In this section user can see all warning records like protection warning records and TimingErr warning records etc. User can access this function through the following path: "Event > Alarm Records". The overview display of warning record is shown in below figure 7.3.13.

	Warning Reco	ords
2018-04-11 TimingErr Phase :	12:17:22.693ms	Act FaultNO.:00001
Slot3		Not Reverted

Figure 7.3.13 Overview Diagram of Warning Records Info

2- Selfchk Info

The self-check info checks the communication status between devices, such as carrier channel abnormality, fiber channel abnormality, GOOSE communication abnormality and internal AD sampling abnormality and etc. To summarise, this device also check hardware, software and configuration file and it can totally save latest 128 records. User can access this function through the following path: "Event > Alarm Records". The overview display of SelfChk info is shown in below figure 7.3.14.

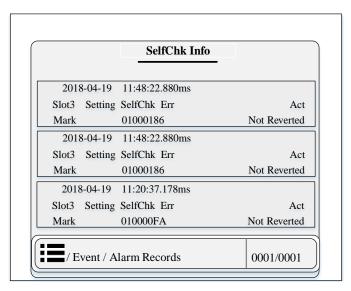


Figure 7.3.14 Overview Display Diagram of SelfChk Info

7.3.4.3 SOE

In this section SOE checks following condition:

- When the state of binary input signal changes, eg. a hard contact, the time tag of the state quantity is marked by the device and the time is defined after debouncing.
- When the state of GOOSE signal changes, the time tag of the state quantity adopts the external input source signal time tag. The GOOSE signal acquisition has no debouncing time.

User can access this function through the following path: "Event > SOE". This device can save 2000 latest SOE records. The diagram of SOE record is shown in below figure 7.3.15.

SOE	
2018-04-11 16:48:22.907ms	
Slot03 WFYXO1_F	0->1
2018-04-11 04:02:27.706ms	
Slot03 WFYXO1_H	0->1
2018-04-11 03:40:47.786ms	
Slot03 WFYXO1_H	0->1
	1
/ Event / SOE	0005 0011

Figure 7.3.15 Overview Display Diagram of SOE

7.3.4.4 Dev Logs

This section divided into three sub-function like remote control, user records and power records see figure 7.3.11.

1- Remote Control

This part shows the remote control signals like circuit breaker, disconnector, reset signal, transformer tap changer, earthing switches etc. The recorded information includes the command source, command time, operation result and failure reason etc. This device can store 128 latest remote control records. User can access this function through the following path: "Event > Dev Logs > Remote Control". The diagram of remote control functions are shown in below figure 7.3.16.

	Remote Con	ntrol	
2018-04-19	11:48:22.880ms		
Channel: 000	Port 01	Parameter	s : DC Close
Process : execu	tive Succeed		
Origin IP: 192	2.168.253.200		
2018-04-16	18:08:32.180ms		
Channel: 000	Port 01	Parameter	s : DC Close
Process : execu	tive Succeed		
Origin IP: 192	2.168.253.200		
	ev Logs		0001/0008

Figure 7.3.16 Overview Display Diagram of Remote Control Access

2- User Records

In this section user can see the setting of user reocrds with slot number, time and date. User can access this function through the following path: "Event > Dev Logs > User Records". The diagram

of user records are shown in below figure 7.3.17.

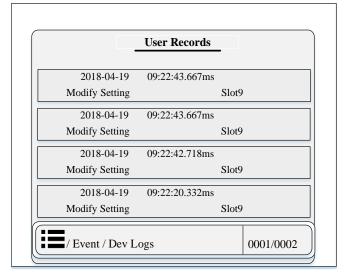


Figure 7.3.17 Overview Diagram of User Records

3- Power records

In this section user can see the setting of power records date and time with energizing and disenergizing slot number. The number of pages of this section can be increase or decrease through the storage of power records. User can access this function through the following path: "Event > Dev Logs > Run Records". The diagram of power record is shown in below figure 7.3.18.

	Power Records	-	
2018-04-19	10:03:38.514ms		
Power on		Slot9	
2018-04-19	10:02:43.627ms		
Power Off		Slot9	
2018-04-19	10:02:49.718ms		
Power on		Slot3	
2018-04-19	10:02:430.232ms	3	
Power Off		Slot3	
/ Event / Dev I			

Figure 7.3.18 Overview Diagram of Power Records

7.3.5 Record Information

In this section, user can see the disturbance records and this section is divided into one sub-section. The diagram of disturbance record is shown in below figure 7.3.18.

Figure 7.3.19 Overview Display of Records Information

7.3.5.1 Fault wave

In this section user can see the disturbance records of all the faults. User can access this function through the following path: "Disturbance Records > Fault Wave". The diagram of faulty wave records are shown in below figure 7.3.20.

		Wave List	
No.01			
PRS-7367	Feeder	Protection_LD1_0_201	8041
9_114735_	518		
No.02			
PRS-7367	Feeder	Protection_LD1_0_201	8041
9_114752_	918		
No.03			
PRS-7367	Feeder	Protection_LD1_0_2018	3041
9_140344_3	328		
			·

Figure 7.3.20 Overview Diagram of Fault Wave List

7.3.6 Setting Information

This section divided into two sub-section like set group and protection settings. In this part user can set the device configuration according to operation demand. The overview display of setting information is shown in below figure 7.3.21.

Set group	Set Grp Change	
	Grp Copy	
Prot Settings	Settings	
/ Setting / Set gro	un	

Figure 7.3.21 Overview Display of Setting Information Sub-functions

7.3.6.1 Set Group

This sub-section is divided into two further sub-section like Set Grp change and Grp Copy and in this part user can change the group setting.

1- Set Grp change

This device has four setting groups and user can easily configure the group setting according to operation demand. This setting is divided into four steps. User can access this function through the following path: "Setting > Set group". The procedure of group setting change is explaining in below figure 7.3.22.

Firstly, enter the device login password. Secondly, select group setting. Thirdly, download new configuring setting. Fourthly, cancel to return back or exit.

Figure 7.3.22 Procedure Diagram of Group Setting Change

2- Grp Copy

This device has four setting groups and user can easily copy one group settings and save this same setting in other group. User can access this function through the following path: "Setting > Set group". The procedure detail of group setting copy is explaining in below figure 7.3.23.

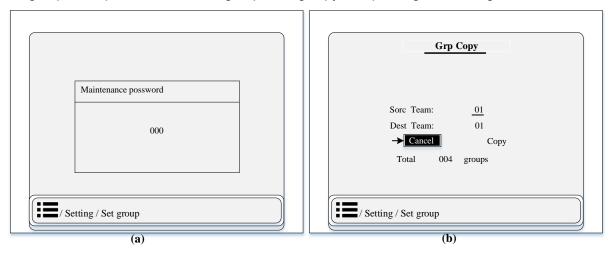


Figure 7.3.23 Procedure Diagram of Group Setting Copy

7.3.6.2 Prot Settings

In this section user can change the different kind of information like public, measurement and protection operation function settings etc. User can access this function through the following path: "Setting > Prot Settings". The detail of protection setting is listed below figure 7.3.24:

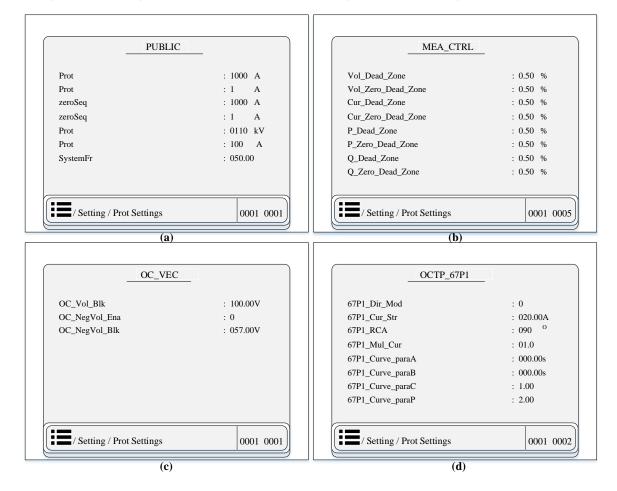


Figure 7.3.24 Diagram of Protection Setting

7.3.7 Configuration Information

This section divided into two sub-function like time and authorization. In this part user can set the device date and time according to the time zone of certain country. Besides that, the monitoring and controlling authorization of different users (of different post) can also be modified. The diagram of configuration information is shown in below figure 7.3.25.

Time	→ Date Time	
	TimeZone	
	DateFormat	
Authorization	User	

Figure 7.3.25 Overview Display of Configuration Information Sub-functions

7.3.7.1 Time

This part is divided into two sub-section date & time and time zone see figure 7.3.25. User can access this function through the following path: "Configuration > Time".

1- Date and time

In this section user can easily set date and time according to practical demand. See figure 7.3.26 (a):

2- Time zone

In this section user can easily set time zone according to their region. See figure 7.3.26 (b):

3- Date Format

In this section user can easily set date format according to their region, such as yyyy-mm-dd, dd-mm-yyyy, MM/dd/yyyy and other 9 date formats. See figure 7.3.26 (c):

Figure 7.3.26 Diagram of (a) Date & Time Setting (b) Time Zone Setting (c) DateFormat Setting

7.3.7.2 Authorization

This part is divided into one sub-function. see figure 7.3.27. User can access this function through the following path: "Configuration > Authorization".

1- User

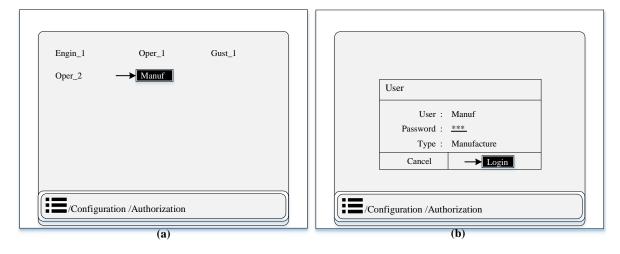

In this section user can easily set relay operator setting like operator 1 or 2 or guest 1. See below table 7.3.5 and figure 7.3.27:


Table 7-7	User setting	detail
-----------	---------------------	--------

User operator selection options	Authorization		
	The manufacturer user has all the configuration functions of		
	access to device setting. At the same time, only the		
	manufacturer's user has the access to hide, read, and write		
Manuf	(display) to the logical device LD, logical component LN and		
Manu	logical component data item DO of 61850 protocol and logical		
	picture subgraph. Therefore, as to realize the manufacturer's		
	basic configuration of the device and not be suitable for		
	opening up the correlation. The content settings for users are		

User operator selection options	Authorization	
	hidden and should not be opened to users to modify, but the	
	contents they need to view are set to read-only.	
	Note!	
	Non of other users have access to this setting function except	
	manufacturer.	
	The engineering user staff account has all the general access	
	of configuration (view and modification) functions of the	
	configuration tool, including drawing logical pictures, main	
	wiring diagrams etc.	
	Note!	
Engin_1	In this user login section, user cannot create an account	
	configuration of the configuration device setting.	
	1) The engineering account can only view and modify	
	its own password.	
	2) This account automatically withdraws or logoff after	
	30 minutes without operation.	
	The operator user account, grnerally it can only view the	
	configuration of the device, the logical picture, wiring diagram	
Oper_1 & Oper_2	and the logical device component. In this section user can't	
	create and modify any of its configuration, such as moving the	
	map element position and deleting port association etc.	
	Guest user account is only for visitors. In this section user have	
Guest_1	no rights to change or view any kind of configuration	
	information.	

7.3.8 Test Information

This section is divided into three sub-parts. In this section user can check the testing accuracy of relay like tripping test, signal test, operation test, warning test, block test, measurement test and mandatory wave etc. The overview display diagram of test information is shown in below figure 7.3.28:

Output Test -	Trip Test	
Comm Test	Operation Test	
	Warning Test	
	Status Test	
Mandatory Wave	Mandatory Wave	
/ Test / Output Test		

Figure 7.3.28 Overview Display of Test Information Sub-functions

7.3.8.1 Output Test

This section mainly realizes output test, including tripping test and signal test. See figure 7.3.29. User can access this function through the following path: "Test > Output Test".

1- Trip Test

In this section user can simulate different trip signal, but the tripping simulation can only be conducted when the IED is under maintenance. see below figure 7.3.29:

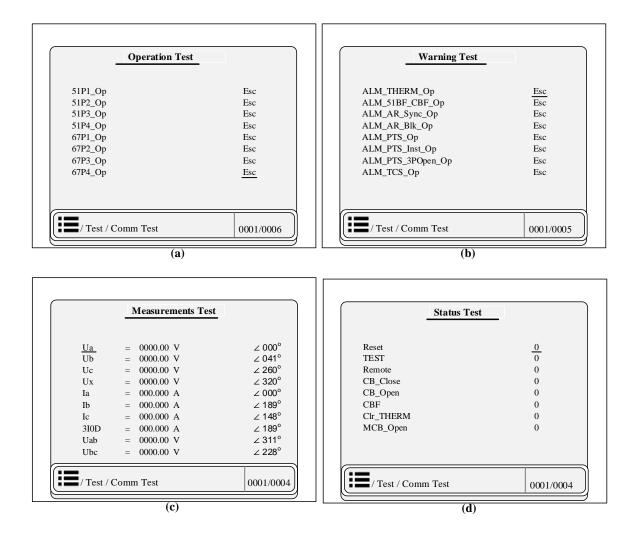

	Trip Test	
Trip		
Close		
TripBU		
TripA		
TripB		
TripC		
TripN		
-		
/ Test / Outp		0001/0005

Figure 7.3.29 Overview Diagram of Trip Test

7.3.8.2 Comm Test

Common test is divided into six sub-test like operation test, warning test, measure test and status test, etc. User can access this function through the following path: "Test > Comm Test". The LCD overview display diagram of common test information of every tests is shown in below figure 7.3.30.

Figure 7.3.30 LCD Display Diagram of (a) Operation Test (b) Warning Test (c) Measurement Test (d) Status Test

1- Operation Test

In this section user can simulate the peotection operation event like 51P, 51G and 67P operation function etc. see above figure 7.3.30 (a):

2- Warning Test

In this section user can simulate the warning event like thermal alarm, breaker failure alarm and PTS alarm etc. see above figure 7.3.30 (b):

3- Measurement Test

In this section user can simulate the measurement values like voltage and current of phase A, B & C, zero sequence voltage and current, frequency and angle etc. see above figure 7.3.30 (c):

4- Status Test

In this section user can simulate the BI changing status, like reset, remote, CB close or open, CBF, TCS, SOTF start and BI open or close etc. see above figure 7.3.30 (d):

7.3.8.3 Mandatory Wave

In this section user can check the mandatory wave function. User can access this function through the following path: "Test > Mandatory wave". After enter this section user can manually start

disturbance recording in disturbance record section.

7.3.9 Clear Information

Clear record	> Clear record	
Clear / Clear r	ecord	

Figure 7.3.31 Overview Display of Clear Information Sub-functions

7.3.9.1 Clear record

In this section user can clear the record history of different functions like Alarm record, LED record and act record etc. User can access this function through the following path: "Clear > Clear record". The clear record structure of LCD display is listed in below figure 7.3.32:

Clear record	
Clr LED	
Clr ActRec	
Clr AlmRec	
Clr StrRec	
Clr SoeRec	
Clr ChkRec	
/ Clear / Clear record	0001/0002

Figure 7.3.32 Diagram of Clear Record Display

7.3.10 Language Information

Language		ge Setting	
/ Language / L	nguage		

Figure 7.3.33 Overview Display of Language Information Sub-functions

7.3.10.1 Language Setting

In this section user can set the IED language according to their demand like Chinese, English, Spanish, and Russian etc. User can access this function through the following path: "Language > Language setting". The language setting diagram of relay is listed in below figure 7.3.34:

Lá	anguage :	<u>English</u>	
Lang	guage / Lang	uage	

Figure 7.3.34 LCD Display diagram of Language Setting

8 Configurable Function

8.1 General Description

The IED is equipped with flexible and powerful configuration functions, including the system configuration, the protection function configuration, the binary input configuration, the binary output configuration and the LED indicator configuration through the auxiliary software, which makes this IED meet various practical requirements.

8.2 Introduction of PRS IED Studio Software

The PRS IED Studio software is developed in order to meet customer's demand on functions of the UAPC platform device, such as device configuration and programmable design. It selects substation as the core of data management and the device as fundamental unit, supporting one substation to supervise many devices.

The software provides two kinds of operation modes: on-line mode and off-line mode. The on-line mode supports the Ethernet connection with the device through the standard IEC60870-5-103 and can be capable of uploading and downloading the configuration files through Ethernet net; the off-line mode supports the off-line setting configuration, including protection logic programming, the binary input configuration, the binary output configuration and etc.

9 Communication Protocol

9.1 Overview

This chapter introduces the data communication and the corresponding hardware of the IEDs. The IED support a wide range of protocols via communication interface (RS-485 or Ethernet port). The protocols are of international standard for communication in substations and it can be selected by modifying the communication parameters.

Local communication with the IED via a computer is achievable throught both the front and back Ethernet ports. Furthermore, remote communication with SCADA or the station gateway is also achievable by choosing the IEC60870-5-103, IEC61850, DNP3.0 communication protocol via RS485 or Ethernet port.

It should be noted that the descriptions contained within this chapter do not aim to fully detail the protocol itself. This section serves to describe the specific implementation of the protocol in the relay.

9.2 Rear Communication Interface

9.2.1 Ethernet Interface

This protective device can provide three rear Ethernet interfaces (optional) and they are unattached each other. Parameters of each Ethernet port can be configured via PRS IED Studio.

9.2.1.1 Ethernet Standardized Communication Cable

It is recommended to use twisted screened eight-core cable as the communication cable. A picture is shown bellow.

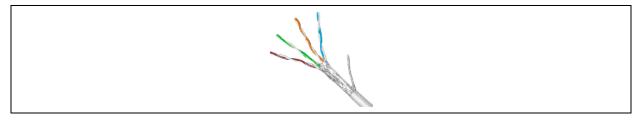


Figure 9.2.1 Ethernet communication cable

9.2.1.2 Ethernet Communication protocol

Ethernet communication protocols are supported by the device including: IEC60870-5-103, PRP, RSTP, DNP3.0, IEC61850 etc. For more details about these communication protocols, see the correlative standards.

9.3 Network Topoloty

9.3.1 Star Topology

Each equipment is connected with an exchanger via communication cable, and thereby it forms a star structure network. Dual-network is recommended in order to increase reliability. SCADA is also connected to the exchanger and will play a role of master station, so the every equipment which has been connected to the exchanger will play a role of slave unit.

9.3.2 PRP Topology

This network topoloty is supported by the device.

9.3.3 RSTP Topology

This network topoloty is supported by the device.

9.4 IEC61850 Protocol

9.4.1 Overview

The IEC 61850 standard is the result of years of work by electric utilities and vendors of electronic equipment to produce standardized communications systems. IEC 61850 is a series of standards describing client/server and peer-to-peer communications, substation design and configuration, testing, environmental and project standards. The complete set includes:

- IEC 61850-1: Introduction and overview
- IEC 61850-2: Glossary
- IEC 61850-3: General requirements
- IEC 61850-4: System and project management
- IEC 61850-5: Communications and requirements for functions and device models
- IEC 61850-6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1: Basic communication structure for substation and feeder equipment– Principles and models
- IEC 61850-7-2: Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI)
- IEC 61850-7-3: Basic communication structure for substation and feeder equipment
 Common data classes
- IEC 61850-7-4: Basic communication structure for substation and feeder equipment– Compatible logical node classes and data classes
- IEC 61850-8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3
- IEC 61850-9-1: Specific Communication Service Mapping (SCSM) Sampled values over

serial unidirectional multidrop point to point link

- IEC 61850-9-2: Specific Communication Service Mapping (SCSM) Sampled values over ISO/IEC 8802-3
- IEC 61850-10: Conformance testing

These documents can be obtained from the IEC (http://www.iec.ch). It is strongly recommended that all those involved with any IEC 61850 implementation obtain this document set.

9.4.2 Communication Profiles

The PRS-7000 series and BP series relay supports IEC 61850 server services over TCP/IP communication protocol stacks. The TCP/IP profile requires the PRS-7000 series and BP series to have an IP address to establish communications.

9.4.2.1 MMS protocol

IEC 61850 specifies the use of the Manufacturing Message Specification (MMS) at the upper (application) layer for transfer of real-time data. IEC 61850-7-2 abstract services and objects are mapped to actual MMS protocol services in IEC61850-8-1.

9.4.2.2 Client/server

The core ACSI defined by IEC 61850 is mapped to manufacturing message specifications (ISO 9506-1, ISO 9506-2). This is a connection-oriented type of communication. The connection is initiated by the client, and communication activity is controlled by the client.

The rules to map the ACSI services supported by PRS-7000 series units to the MMS are as shown in following table

ACSI		MMS
Server model	CatSan/orDiracton/ (road con/or diracton/)	GetNameList (read name list
Server moder	GetServerDirectory (read server directory)	service)
	Associate (associate)	Initiate (initial service)
Associate model	Abort (abnormal abort)	Abort (abort service)
	Release (release)	Conclude (end service)
	GetLogicalDeviceDirectory (read logic device	GetNameList (read name list
Logic device model	directory)	service)
	GetLogicalNodeDirectory (read logic node	GetNameList (read name list
Logic node model	directory)	service)
	GetAllDataValues (read all data value)	Read (read service)
	GetDataValues (read data value)	Read (read service)
	SetDataValues (set data value)	Write (write service)
Data model		GetVariableAccessAttribute
	GetDataDirectory (define read data)	(read variable access attribute
		service)

Table 9-1 Mapping of ACSI to MMS service

		GetVariableAccessAttribute
	GetDataDefinition (read data directory)	(read variable access attribute
		service)
	GetDataSetValue (read data set value)	Read (read service)
	SetDataSetValue (set data set value)	Write (write service)
	CreateDataSet (establish data set)	DefineNamedVariableList
		(define named variable list service)
Data set model	DeleteDataSet (delete data set)	DeleteNamedVariableList
		(delete named variable list service)
		GetNamedVariableListAttribute
	GetDataSetDirectory (read data set directory)	(read named variable list attribute
		service)
	SetDataValues (set data value)	Write (write service)
Substituting model	GetDataValues (read data value)	Read (read service)
	SelectActiveSG (select activating setting group)	Write (write service)
	SelectEditSG (select edit setting group)	Write (write service)
	SetSGValues (set setting group value)	Write (write service)
Setting group control	ConfirmEditSGValues (confirm editting setting	
block model	group value)	Write (write service)
	GetSGValues (read setting group value)	Read (read service)
	GetSGCBValues (read setting group control block	
	value)	Read (read service)
	Report (report)	InformationReport (information report)
	GetBRCBValues (read buffered report control	
Buffered report control	block value)	Read (read service)
block	SetBRCBValues (set buffered report control block	
	value)	Write (write service)
	Report (report)	InformationReport (information report)
	GetURCBValues (read non-buffered report control	
Non-buffered report	block value)	Read (read service)
control block	SetURCBValues (set non-buffered report control	
	block value)	Write (write service)
	GetLCBValues (read log control block value)	Read (read service)
	SetLCBValues (set log control block value)	Write (write service)
Log control block	QueryLogByTime (query log by time)	ReadJournal (read log service)
model	QueryLogAfter (query log after)	ReadJournal (read log service)
	GetLogStatusValues (read log status values)	Read (read service)
	GetGoCBValues (read GOOSE control block	
	values)	Read (read service)
GOOSE	SetGoCBValues (set GOOSE control block	
	values)	Write (write service)
	GetGsCBValues (read GSSE control block	
GSSE		Read (read service)
	values)	

	SetGsCBValues (set GSSE control block values)	Write (write service)
MSV	GetMSVCBValues (read MSV control block	Read (read service)
	values)	
	SetMSVCBValues (set MSV control block values)	Write (write service)
USV	GetUSVCBValues (read USV control block	Read (read service)
	values)	
	SetUSVCBValues (set USV control block values)	Write (write service)
Control model	Select (select)	Read (read service)
	SelectWithValue (select with value)	Write (write service)
	Cancel (cancel)	Write (write service)
	Operate (operate)	Write (write service)
	CommandTermination (command termination)	InformationReport (information report)
	TimeActivatedOperate (time activated operation)	Write (write service)
File transmission	GetFile (read file)	FileOpen, FileRead, FileClose
		(file open, file read and file close
		service sequence)
model	SetFile (set file)	ObtainFile (obtain file service)
	DeleteFile (delete file)	FileDelete (file delete service)
	GetFileAttributeValues (read file attribute values)	FileAttributes (file attribute service)

9.4.2.3 Peer-to-peer

This is a non-connection-oriented, high speed type of communication usually between substation equipment, such as protection relays, intelligent terminal. GOOSE is the method of peer-to-peer communication.

9.4.2.4 Substation configuration language (SCL)

IEC 61850 has defined a series of configuration documents (ICD, IID, SCD, SED, CID), which are prepared with SCL (substation configuration language). The SCL includes the following:

Head: it is used to identify a SCL configuration document and its version, and also to designate relevant names into the mapping option of information (FuntionName)

Substation: it is used to describe the function structure of the substation, and mark the primary devices and their electrical connection relationship.

IED: intelligent electronic device description, to describe the IED pre-configuration, access points, logic devices, logic nodes, data objects, etc.

DataTypeTemplate: the instantiated logic node type, and logic node type is a specific sample of logic node data.

The purpose to define and use SCL is: the description of intelligent electronic device capability and description of substation automation system can be exchanged in a compatible manner between the intelligent electronic device management tools and system configuration tools provided by different manufacturers.

9.4.2.5 GOOSE

GOOSE service is used to transmit fast messages, such as trip and switch position.

The GOOSE service adopts the pear-to-pear transmission or network transmission, and is classified as GOOSE sending and GOOSE receiving.

9.4.2.6 GOOSE sending mechanism

GOCB is automatically enabled when the unit is powered on, when all status of the unit are determined, it performs sending according to the data set shifting mode, to quickly send the initial status of the own GOOSE information;

The time interval for immediate re-sending after shift of GOOSE message is the MinTime parameter (i.e. T1); the "timeAllowedtoLive" parameter in GOOSE message is 2 times the "MaxTime" configuration parameter (i.e. 2T0);

9.4.2.7 GOOSE receiving mechanism

The GOOSE receiving buffer zone of the unit receives the new GOOSE messages, after a strict check of the relevant parameters of GOOSE messages, the receiving side first compares if the StNum (status number) of the newly received frame and that in the GOOSE message of the previous frame are equal. If the StNum of the two frames of GOOSE messages are equal, the SqNum (sequence number) of the two frames of GOOSE messages are compared, if the SqNum of the newly received GOOSE frame is bigger than the SqNum of the previous frame, this GOOSE message is discarded, otherwise the data of the receiving side is updated. If the two GOOSE messages have different StNum, the data of the receiving side are updated;

When receiving GOOSE messages, the PRS-7000 series unit strictly checks if parameters such as AppID, GOID, GOCBRef, DataSet and ConfRev are matching;

In receiving GOOSE messages, it will take into account cases of communication interruption of fault with issuing unit, when the GOOSE communication is interrupted or the configured versions are not identical, the received GOOSE message should maintain the status before interruption.

9.4.3 Data set and control block

PRS-7000 and BP series devices support real-time sending of data. The data objects requiring real-time monitoring are configured into data set, and the data set are associated to report control and GoCB, so that the change information of monitored objects can be sent in real-time to the background via the report service and GOOSE.

9.4.3.1 Data set

PRS-7000 series devices usually configure data sets in advance in the ICD document, such as protection event, protection digital input and protection measurement. The SCT (system configuration tool) can also add, delete and modify data set configuration according to the needs of existing actual projects.

A data set is an ObjectReference set of orderly DATA or DataAttrubutes. It usually include the following attributes:

- IdInst: the logic device containing the DATA or DataAttrubutes;
- InClass: the logic node class containing the DATA or DataAttrubutes;
- InInst: the logic node instant number containing the DATA or DataAttrubutes;
- Fc: all attributes of functional constraint required by DATA or DataAttrubutes;
- doName: name of DATA, or name belonging to the DataAttrubutes;
- daName: attribute name.

9.4.3.2 Report control block

IEC 61850 has defined the report control block, to describe how the changed information is actively submitted via report service when the data set members have changed. Report control blocks are classified into buffered report control block and non-buffered report control block. In case of communication interruption, the newly occurring event will still be stored as buffered report control block, otherwise, it is a non-buffered report control block.

The report control block performs the control of report submission via a series of attribute configurations. Specifically, it has the following important attributes:

RptID

The identity of report control block, globally unique within the scope of LD, if the RptID of the RCB is set by the client side as NULL, in the report submitted by device, RptID is full path.

OptFlds

The option fields OptFlds contained in the report. The PRS-7000 series device supports the following option fields:

- Bit 1: Sequence-number
- Bit 2: Report-time-stamp
- Bit 3: Reason-for-inclusion
- Bit 4: Data-set-name
- Bit 5: Data-reference
- Bit 7: EntryID (for buffered reports only)
- Bit 8: Conf-revision
- Bit 9: Segmentation

When an item is set as 1, the corresponding information will be embodied in the report.

DatSet

The name of the data set associated with the report control block and under the same LD. The members of this data set are monitored by this report control block.

BufTm

Buffer time, it is the buffer time internally prompted by the dchg (data change), qchg (quality change), and dupd (data updating) of the rcb, in ms, with missing value as 0, indicating not using the buffer time attribute, and the maximum value is 1h.

The timer is started when the first internal prompt arrives, after it is reached in timer, all event messages within the buffer time are packed into one report, and submitted to the client side.

When the second change of the same signal arrives in the buffer time, the buffered report is submitted immediately, and the timer is booted again, to start again the subsequent internal prompt buffer.

TrgOps

Trigger option, used to filter the conditions for sending reports. PRS-7000 supports the following trigger options:

- Bit 1: Data change
- Bit 2: Quality change
- Bit 3: Data updating (the service follow-up of Ed2)
- Bit 4: Completeness period
- Bit 5: Total call

IntgPd

Completeness period time, to be set by the client side. After successful device enabling (RptEna = TRUE), the timer is started immediately, and after the expiration of completeness period time, the current values of all members in the data set associated by the report are packed and submitted.

The completeness period time set as 0 means the completeness submission function is not enabled.

GI

Total call is launched by the client side with initiative. After the report is enabled, the client side takes initiative to issue GI = TRUE, then the device immediately submit all data values in the current data set.

PurgeBuf

Purge buffer. When the client side sets PurgeBuf = TRUE, all report entries in the IED buffer report are purged.

When the client side modifies RptID, DataSet, BufTime, TrgOps, IntgPd, the device will automatically set purging buffer reports, equivalent to setting PurgeBuf = TRUE.

9.4.3.3 GOOSE control block

The fast messages of the PRS-7000 and BP series device is transmitted via GOOSE, and the transmission characteristics of GOOSE is controlled by the GOOSE control block (GoCB). GoCB has the following important characteristics:

App ID

The application ID, representing the logic device where the GoCB is located. The missing value of App ID is the Object Reference of GoCB.

DatSet

The values of members of the data set associated by GoCB are transmitted by GOOSE.

9.4.4 Logic nodes and data modeling

9.4.4.1 Logic nodes

IEC 61850 7-4 has defined a series of logic nodes, which constitute the minimum communication unit of intelligent electronic devices as classified by functions. There are three types of logic nodes used by the PRS-7000 and BP series unit: management logic nodes (LLN0), physical device logic nodes (LPHD) and application function logic nodes.

LLN0

Management logic nodes provide the management and control functions for all logic nodes and data objects within the logic devices. Some common services are modeled in LLNO, such as setting group control block (SGCB), GOOSE control block (GoCB), SV control block (MsvCB), reported control block (BRCB and URCB) and log control block (LCB); some common data objects are modeled in this node, such as Loc, to represent the local and remote operation enabling of the unit, and the based function VEBI and common settings; some data objects represent the meaning of the whole logic device, such as Beh, it is jointly formed by the Beh value of all logic nodes in the logic device, to represent the behavior and status of the whole logic device.

LPHD

It represents the information of physical devices, including the device manufacturer, unit model, software version, unit serial No., if it has an agency and the device health status. In this logic node, it is also extended to include device information such as name of protected device and unit time calibration method.

Application function logic nodes

Application function logic nodes include when classified by functions:

- A: automatic control logic nodes
- C: monitoring related logic nodes, such as CSWI
- G: general purpose function logic nodes, such as GGIO, GAPC
- I: filing related logic nodes,
- M: measurement and metering related logic nodes, such as MMXU
- P: protection function logic nodes, such as PDIF, PDIS, PTOC, PTRC
- R: protection related functional logic nodes, such as RREC, RBRF
- S: sensors, monitoring
- T: instrument transducer logic nodes, such as TVTR, TCTR

- X: switching device logic nodes, such as XCBR, XSWI
- Y: power transformer and related function logic nodes

PRS-7000 and BP series unit uses the corresponding logic nodes according to the functions selected by user. For the corresponding logic nodes, please refer to the instruction manual for unit of the specific model.

9.4.4.2 Data object

IEC 61850 7-3 defined common data types, including:

- Status information: such as SPS, INS, ACT, ACD
- Measured value information: such as MV, CMV, WYE
- Controllable status information: such as SPC, INC, DPC
- Status set values: such as SPG, ING
- Analog set values: such as ASG
- > Description information: such as LPL, DPL

The PRS-7000 and BP series unit uses the above common data types, and instantiate the specific data objects according to the need of application functions, to meet the need of application functions. There are the following common data objects in all logic nodes (except for LPHD):

Mod

The model of logic node. It represents the behavior mode of the logic node, such as normal, testing and blocked.

Beh

The performance of the logic node, representing the current performance status of the logic node, the value of the same Mod is read-only and cannot be modified.

Health

Health status, it reflects the status of the relevant software and hardware of the logic node.

NamPlt

The name plate of the logic node

9.5 DNP3.0 Protocol

9.5.1 Overview

The descriptions given here are intended to accompany this relay. The DNP3.0 protocol is not described here; please refer to the DNP3.0 protocol standard for the details about the DNP3.0 implementation. This manual only specifies which objects, variations and qualifiers are supported in this relay, and also specifies what data is available from this relay via DNP3.0.

The DNP3.0 communication uses the Ethernet ports (electrical or optical) at the rear side of this relay.

9.5.2 Link Layer Functions

Please see the DNP3.0 protocol standard for the details about the linker layer functions.

9.5.3 Transport Functions

Please see the DNP3.0 protocol standard for the details about the transport functions.

9.5.4 Application Layer Functions

9.5.4.1 Function Code

Function Code	Function		
0 (0x00)	Confirm		
1 (0x01)	Read		
2 (0x02)	Write		
3 (0x03)	Select		
4 (0x04)	Operate		
5 (0x05)	Direct Operate		
6 (0x06)	Direct Operate No Acknowledgment		
13 (0x0D)	Cold Restart		
14 (0x0E)	Warm Restart		
20 (0x14)	Enable Unsolicited Responses		
21 (0x15)	Disable Unsolicited Responses		
22 (0x16)	Assign Class		
23 (0x17)	Delay Measurement		

Table 9-2 Function Code

9.5.4.2 Communication Table Configuration

This relay now supports 3 Ethernet clients and 2 serial port clients. Each client can be set the DNP related communication parameters respectively and be selected the user-defined communication table.

The user can configure the user-defined communication table through the PRS IED Studio configuration tool auxiliary software. The object groups "Binary Input", "Binary Output", "Analog Input" and "Analog Output" can be configured according to the practical engineering demand.

9.5.4.3 Analog Input and Output Configuration

To the analog inputs, the attributes "deadband" and "factor" of each analog input can be configured independently. To the analog outputs, only the attribute "factor" of each analog output needs to be configured. If the integer mode is adopted for the data formats of analog values (to "Analog Input", "Object Variation" is 1, 2 and 3; to "Analog Output", "Object Variation" is 1 and 2.), the analog values will be multiplied by the "factor" respectively to ensure their accuracy. And if the float mode is adopted for the data formats of analog values will be sent directly.

The judgment method of the analog input change is as below: Calculate the difference between

the current new value and the stored history value and make the difference value multiply by the "factor", then compare the result with the "deadband" value. If the result is greater than the "deadband" value, then an event message of corresponding analog input change will be created. In normal communication process, the master can online read or modify a "deadband" value by reading or modifying the variation in "Group34".

9.5.4.4 Binary Output Configuration

The remote control signals, logic links and external extended output commands can be configured into the "Binary Output" group.

To an extended output command, if a selected command is controlled remotely, this command point will output a high ~ level pulse. The pulse width can be decided by the "On ~ time" in the related "Binary Command" which is from the DNP3.0 master. If the "On ~ time" is set as "0", the default pulse width is 500ms.

9.5.4.5 Class Configuration

If the DNP3.0 master calls the Class0 data, this relay will transmit all actual values of the "Analog Input", "Binary Input" and "Analog Output". The classes of the "Analog Input" and "Binary Input" can be defined by modifying relevant settings. In communication process, the DNP3.0 master can online modify the class of an "Analog Input" or a "Binary Input" through "Function Code 22" (Assign Class).

10 Commissioning

10.1 General

This part contains a brief description about how to verify the function, including functional verification items, functional verification methods and more.

With high degree of self-checking, any fault with the internal hardware and software can be diagnosed by the device itself. So for the commissioning, only hardware interface and the application-specific software function are necessary to verify.

Before carrying out commissioning, users should pay close attention to the safety, technical data and the ratings on the front panel label.

10.2 Safety Instructions

This section contains some safety information, some of which are given warning signs to avoid personal injury or equipment damage, to prompt the user to be careful.

10.2.1 Safety Identification

Electrical warning icon indicating a danger of electric shock.

Notice icon, indicating important information or warnings involved in the article. This icon may indicate a danger of software, equipment or property damage.

Information icons alert readers to important facts or conditions.

Prompt staff not to forget the dangers of static electricity and make prevention.

Forbid to energize the device while not grounded, to avoid endangering the personal safety due to electrical insulation damage!

Although these markings warn of the danger, it is important to note that operating damaged equipment under certain operating conditions can result in reduced process performance and may result in death or personal injury. Therefore, be sure to fully comply with all warnings and cautions.

10.2.2 Safety Identification Examples

For the various safety instructions given in the previous section, the following are examples

10.2.2.1 Warning Signs

Do not touch the circuit during operation. There may be fatal voltage and current.

Strict compliance with safety regulations. Work in high voltage environment need to be serious to avoid personal injury or equipment damage.

When measuring signals in an open circuit, remember to use a properly isolated test clamp that can have fatal voltages and currents.

A

During normal operation, never disconnect or connect the wires or connectors connected with the terminals. It may cause deadly dangerous voltage and current, may also interrupt the operation of the equipment, damage the terminals and the measuring circuit.

Never disconnect the secondary winding of the current transformer. Current transformers that operate when the secondary windings are open will create strong potentials that may damage the transformers and may cause personal injury.

When the protective device is energized, never plug the module. Hot plug may damage the protection device and measuring circuit, may also result in injury.

10.2.2.2 Caution Signs

Do not connect the protective shell to the live wire, charging the shell may damage the internal circuit.

During installation and commissioning, be careful not to get an electric shock if you touch the leads and connecting terminals

10.2.2.3 Notice Signs

Do not modify the settings in the running protection device. After modify the setting, verify it according to the rules.

10.2.2.4 Anti-static Signs

Remember to avoid touching circuits, including electronic circuits, and the device may be damaged if subjected to static electricity. Electronic circuits may also contain deadly high voltages.

Remember to use a certified conductive bag when transporting the module. Remember to connect the anti-static wristband to the ground when handling the module and remember to operate it on a suitable anti-static surface. Static electricity discharge may cause damage to the module.

Remember to wear the anti-static wristband connected to the ground when replace the module, Static electricity discharge may damage the module and protection device.

10.2.2.5 Earthing Signs

Regardless of operating conditions, remember to connect the protective device to the earth, also needed for special occasions such as testing, demonstrating and off-line configuration on the desk. Operation of the protective device without proper earthing may

damage the protective device and the measuring circuit and may also cause an injuring accident.

10.2.2.6 Information Signs

Effective value and step of settings explanation: The protection setting supports as much as 6 significant figures, of which the decimal point occupies one digit (the highest digit can not be a decimal point). The minimum setting step is 0.01.

10.3 Commission Tools

10.3.1 Instrumentation and Meters Notice:

- Instruments, meters must pass the inspection, and within the validity of the inspection
- instruments, meters should be accurate level higher than the seized equipment related indicators 2 to 4 levels.

10.3.2 Tools Requirement:

- Relay protection testing devices: Multifunctional dynamic current and voltage injection test set with interval timer.
- Regulative DC power: DC output can be adjustable within 0 ~ 240V.
- Accuracy meter: support three-phase voltage, three-phase current output.
- Tong-type ammeter
- Multifunction phase meter
- Multimeter
- Megger
- Laptop: with appropriate software
- Network cable
- Optical power meter
- EIA RS-485 to EIA RS-232 converter

10.4 Commission Preparation

10.4.1 Basic Knowledge

When commissioning this device for the first time, sufficient time should be allowed to become familiar with the manual to understand the basic operation, protection principles, and related basic performance of the devices as much as possible. If find any doubt in the process, consult the manufacturer's field service personnel or technical support staff of our company.

Alternatively, if a laptop is available together with suitable setting software (such as PRS IED Studio software), the menu can be viewed one page at a time to display a full column of data and text. This PC software also allows settings to be entered more easily, saved to a file on disk for future reference or printed to produce a setting record. Refer to the PRS IED Studio Instruction manual

for details.

If the application-specific settings have been applied to the relay prior to commissioning, it is advisable to make a copy of the settings so as to allow them restoration later. This could be done by extracting the settings from the relay itself via printer or manually creating a setting record.

10.4.2 Operation Preparation

Check the printer wiring is normal, the print paper is ample, in order to print the test settings, version, and a variety of experiment data.

Attention! The device should be checked before power on. The appearance should be no damage. The module is plugged and fastened, and the insulation of the DC voltage circuit meets the specified requirements. The indicators can refer to the commissioning record of the device.

Attention! Disconnect the external AC circuit of the cubicle before the test to avoid causing a safety accident, which will cause serious damage to the construction workers on site.

Attention! When you need to plug and unplug the device module, you should ensure the device is powered off and make the anti-static measures to prevent the module damage or performance degradation.

Attention! Temporarily open or shorted terminals should be well documented for reliable recovery after the end of the test.

If it has been necessary to disconnect any of the external wiring from the protection in order to perform any of the following tests, it should be ensured that all connections are replaced in accordance with the relevant external connection or scheme diagram. Confirm current and voltage transformer wiring.

10.5 Product Checks

These product checks cover all aspects of the relay which should be checked to ensure that it has not been physically damaged prior to commissioning, is functioning correctly and all input quantity measurements are within the stated tolerances.

10.5.1 Document Check

Document acceptance check include: protection inspection and factory test reports, certificates, drawings, technical manual of related equipment.

10.5.2 Appearance Inspection

Check the the front and back of the cubicle of various electrical components, terminal blocks, hard-switch. All should be marked with the number, name, application and operating position. The marked handwriting should be clear, neat, and not easy to bleach.

The device mark inspection shall include the product type, name, manufacturer's name and trademark, date of manufacture and serial number, safety mark, etc., the mark and installation location shall be consistent with the design drawings.

Inspect the surface of the device. There shall not be scratches, bumps, groove marks, rust, deformation and other defects that affect the quality and appearance;

Check the device panel keyboard is complete, flexible operation, the LCD is clear, the indicator shows normal;

Uncharged metal part of the device should be connected as one, and reliable grounding;

Check the cubicle shell of the device must be grounded reliably;

10.5.3 Insulation Check

Disconnect the weak electric link with other devices and short circuit the AC voltage circuit terminal, AC current circuit terminal, DC circuit terminal and signal circuit terminal inside the cubicle terminal block, and measure the insulation resistance value using the tester whose open circuit voltage is 500V. Insulation should meet the following requirements:

Device independent circuit and exposed conductive parts, 500V megger insulation resistance measured value should be no less than $100M\Omega$;

Between electrically disconnected independent circuits, 500V megger insulation resistance measured value should be no less than $100M\Omega$;

After the insulation test is completed, make sure that all external wiring is properly connected.

10.5.4 External Wiring Check

External protection wiring should be consistent with the design drawings; Internal and external wiring on the terminal block and cable marking on it is correct, complete, and consistent with the drawings; Secondary circuit wiring should be neat and beautiful, solid and reliable;

All secondary cables and terminal blocks wiring connection should be solid. Cable mark should be complete, correct and clear;

The correct mark should be attached to the optical fiber (including optical cable, pigtail, jumper) and both ends of the device port. Such fiber-optic annotation should include the optical fiber number, destination. The starting point of the fiber should indicate the cubicle number. The content of the port mark should include the port number and destination. The starting point of the port should include the cubicle number, switch number and port number.

10.5.5 Test Category

The following tests are necessary to ensure the normal operation of the equipment before it is first put into service.

These tests are performed for the following hardware to ensure that there is no hardware defect. Defects of hardware circuits other than the following can be detected by self-monitoring when the power supply is energized.

- User interfaces test
- Binary input circuits and output circuits test

- AC input circuits test
- Function tests

These tests are performed for the following functions that are fully software-based. Tests of the protection schemes and fault locator require a dynamic test set.

- Measuring elements test
- Timers test
- Metering and recording test
- Conjunctive tests

The tests are performed after the relay is connected with the primary equipment and other external equipment.

- On load test.
- Phase sequence check and polarity check.

10.6 With the Relay Energized

Check that the input range of the external power supply should meet the power requirements of the "technical data" section within the permissible power supply input voltage range.

Attention! All external circuits connected to the unit must be checked to ensure correct installation before the unit is powered on or the test procedure started.

10.6.1 LCD Display Check

After the device is powered on, the LCD will be lit. After the device is initialized, if the device is in normal operation, the LCD displays the status of the main single line diagram.

Attention! If the device is in the alarm state after power-on, the LCD displays the alarm status information. At this point you can refer to the "Supervision" section to analyze the cause of

the alarm and treatment.

10.6.2 Date and Time

If the time and date is not being maintained by substation automation system, the date and time should be set manually.

Set the date and time to the correct local time and date using menu item "Clock".

For devices using IRIG-B (DC) time code and SNTP, IEEE 1588 time synchronization, you can verify the timing accuracy by modifying the clock setting of the device. For PPM, PPS time synchronization system, through the time synchronization binary input check.

10.6.3 Light Emitting Diodes (LEDs)

The device has two lights that can not be defined. the two lights are as follows:

"Healthy": indicates that the device is in normal operation, no software, hardware failure. When the

"healthy" light goes out, it indicates a serious problem with the device, resulting in the device not functioning properly.

"Alarm": indicates that there are some alarm events on the device. On this condition, you can analyze the cause of the alarm and how to handle it by checking the "supervision" section of the manual.

The rest of the indicators are configurable indicators.

If the indicator of the device is set to the self-retaining state, if the signal is not reset before the latest power-off, the signal will continue to be triggered when the device is powered on again, and the indicator can be reset by resetting operation. It is likely that alarms related to voltage transformer supervision will not reset at this stage.

10.6.3.1 Test the HEALTHY and ALARM LEDs

Apply the rated power supply and check that the "HEALTHY" LED is lighting in green. We need to emphasize that the "HEALTHY" LED is always lighting in operation course except that this device finds serious errors in it.

Produce one of the abnormal conditions listed in Chapter 4, the "ALARM" LED will light in yellow. When abnormal condition reset, the "ALARM" LED extinguishes.

10.6.3.2 Test the Other LEDs

Test the other LEDs according to the configuration of the LEDs (through the PRS IED Studio software). If the conditions which can turn on the selected LED are satisfied, the selected LED will be on.

10.6.4 Test the AC Current Circuit

Attention! The wiring must be checked in strict accordance with the AC current connection drawings provided.

The purpose of this test is to check whether the wiring of the AC circuit in the cubicle is correct and whether the sampling precision meets the requirements. The sampling accuracy and polarity of the device can be checked through sourcing rated AC current at the AC current input terminal on the back of the cubicle .

Protection current measurement accuracy requirement shall be no higher than 1% or 0.02In. However an additional allowance must be made for the accuracy of the test equipment being used.

Apply current equal to the current transformer secondary winding rating to each currenttransformer input in turn, see the following table, checking the magnitude using a multimeter/test set readout. The corresponding reading can then be checked in the relays menu.

Group No.	ltem	Input Value	Input Angle	Display Value	Display Angle
Thuse where summer 4	la				
Three-phase current 1	lb				

Table 10.6.1 Current channel checkout

Group No.	ltem	Input Value	Input Angle	Display Value	Display Angle
	lc				
Three-phase current 2	la				
	lb				
	lc				
Three-phase current	la				
	lb				
	lc				
Residual current 1	310				
Residual current 2	310				
Residual current	310				

10.6.5 Test the AC Voltage Inputs

Attention! The wiring must be checked in strict accordance with the AC voltage connection drawings provided.

The purpose of this test is to check whether the wiring of the AC voltage in the cubicle is correct and whether the sampling precision meets the requirements. The sampling accuracy and polarity of the device can be checked through sourcing rated AC voltage at the AC voltage input terminal on the back of the cubicle .

Protection voltage measurement accuracy requirement shall be no higher than 1% or 0.02In. However an additional allowance must be made for the accuracy of the test equipment being used.

Apply voltage equal to the voltage transformer secondary winding rating to each voltagetransformer input in turn, see the following table, checking the magnitude using a multimeter/test set readout. The corresponding reading can then be checked in the relays menu.

Group No.	ltem	Input Value	Input Angle	Display Value	Display Angle
Three-phase voltage 1	Ua				
	Ub				
	Uc				
	Ua				
Three-phase voltage 2	Ub				
	Uc				
	Ua				
Three-phase voltage	Ub				
	Uc				
Residual voltage 1	3U0				
Residual voltage 2	3U0				
Residual voltage	3U0				

Table 10.6.2 Voltage channel checkout

10.6.6 Test the Binary Inputs

The purpose of this test is to check whether the connection of binary input circuit is correct. During

the test, the voltage applied to the binary input terminal must be within the allowable operating range.

Each binary input status can be checked by the device LCD panel, and the status "1" indicates that the binary input has been applied with an input voltage, and the opening status becomes "0" when the input voltage disappears.

Table 10.6.3 Binary inputs checkout

Teminal N0.	Signal Name	States on LCD	Correct?

10.6.7 Test the Binary Onputs

The purpose of this test is to check whether the binary output circuit connection is correct. According to the protection logic of the device and various kinds of signal output logic, stimulate a fault condition. The corresponding relay contact of the device shall be operated with the corresponding action or alarm signal.

10.6.8 Protection Function Checks

The purpose of this experiment is to verify the correctness of the protection logic. Protection function tests generally include the following types:

- Impedance protection test
- Current protection test
- Voltage protection test
- Frequence protection test
- Secondary system supervision function test

For details on how to implement the protection logic function, refer to "Operation Theory"

10.6.9 On-load Checks

The objectives of the on-load checks are:

- Confirm the external wiring to the current and voltage inputs is correct.
- Measure the magnitude of on-load current and voltage (if applicable).
- Check the polarity of each current transformer.

10.6.10 Final Checks

After the above tests are completed, remove all test or temporary shorting leads, etc. Restore the original correct wiring. Tighten the secondary circuit terminals, especially for the current terminals, circuit breaker closing and opening, operating power supply circuit.

If a test block is installed, remove the test plug and replace the cover so that the protection is put into service.

Ensure that all event records, fault records, disturbance records and alarms have been cleared and LED's has been reset before leaving the protection.

Ensure that the protection has been restored to service.

11 Installation

11.1 General

Design and installation chapter is suit for design, installation, commissioning and maintenance staff. Designers must have a wealth of experience in electrical design. The installer must have the basic knowledge of electronic equipment and cubicle drawing reading. Commissioning and maintenance personnel must have extensive experience in operating protective equipment and test equipment.The equipment must be shipped, stored and installed with the greatest care.

Choose the place of installation such that the communication interface and the controls on the front of the device are easily accessible.

Air must circulate freely around the equipment. Observe all the requirements regarding place of installation and ambient conditions given in this instruction manual.

Take care that the external wiring is properly brought into the equipment and terminated correctly and pay special attention to grounding. Strictly observe the corresponding guidelines contained in this section.

11.2 Safety Instructions

Warning! Only insert or withdraw a module while the device power supply is switched off. To this end, disconnect the power supply cable that connects with the power supply module.

Attention! A module can only be inserted in the reserved slot. Components can be damaged or destroyed by inserting module in a wrong slot.

The basic precautions to guard against electrostatic discharge are as follows:

- Should boards have to be removed from this relay installed in a grounded cubicle in an HV switchgear installation, please discharge yourself by touching station ground (the cubicle) beforehand.
- Only hold electronic boards at the edges, taking care not to touch the components.
- Only works on boards that have been removed from the cubicle on a workbench designed for electronic equipment and wear a grounded wristband.
- Always store and ship the electronic boards in their original packing. Place electronic parts in electrostatic screened packing materials.

11.3 Checking the Shipment

Vehicles, trains, ships and all other means of transport are available, but to prevent snow and rain, shock, impact and collision, to ensure product packaging integrity.

Check that the consignment is complete immediately upon receipt. Notify the nearest CYG SUNRI CO., LTD. Company or agent, should departures from the delivery note, the shipping papers or the order be found.

Visually inspect all the material when unpacking it. When there is evidence of transport damage, lodge a claim immediately in writing with the last carrier and notify the nearest CYG SUNRI CO., LTD.Company or agent.

> Unpacking and checking procedures

- 1. Remove the shipping package.
- 2. Before unpacking, you should first check the equipment packaging intact, whether there are signs of serious collision and phenomenons that equipment in the box may be damaged. If found abnormal, it is recommended to take pictures as a record, confirm and contact with the manufacturer at first time.
- 3. When unpacking, you should use a claw, and pull out the nails, and then pry off the box lid; If the crowbar is used, never take the device as a fulcrum, and it is forbidden to stick into the wooden box carelessly with the crowbar. Open the box with the greatest care and avoid excessive vibration.
- 4. Check the appearance of the device is intact.
- 5. Check the delivery list. Check the device certificate of competency, supporting documents, attachments, spare parts, etc. are consistent with the order requirements, whether the packing list and the type, name, quantity, etc. are consistent and complete. If correct, sign the confirmation.
- 6. Manufacturer documents and spare parts should be assigned to personal keeping and registration.
- 7. If any abnormalities occur during unpacking, feedback CYG SUNRI CO., LTD. Company or agent at the first time, so as to avoid the follow-up of unclear responsibilities.

If the equipment is not going to be installed and commissioned immediately, store all the parts in their original packing in a clean dry place and keep air circulation. And to prevent the intrusion of various harmful gases, non-corrosive items stored in the same place.

11.4 Material and Tools Required

The necessary mounting kits will be provided, including screws, pincers and assembly instructions.

A suitable drill and spanners are required to secure the cubicles to the floor using the plugs provided (if this relay is mounted in cubicles).

11.5 Device Location and Ambient Conditions

The mechanical and electrical environmental conditions at the installation site must comply with the requirements of "Chapter 2 Technical Data". Avoid adverse conditions caused by the environment:

- Avoid installing in wet, dark and other places likely to cause damp and rust. If in unavoidable rainy area, install the device in a higher position;
- If the area is an earthquake prone area, fix the protection device tightly;
- If there is a lot of dust in the installation place, clean it before installing.

The place of installation should permit easy access especially to front of the device, i.e. to the human machine interface of the equipment. There should also be free access at the rear of the equipment for additions and replacement of electronic boards.

11.6 Mechanical Installation

In the case of equipment supplied in cubicles, place the cubicles on the foundations that have been prepared. Take care while doing so not to jam or otherwise damage any of the cables that have already been installed. Secure the cubicles to the foundations.

The device should be firmly fixed in the cubicle(cabinet), and the connecting screws should be tightened. The grounding wire of each device should be connected with the copper grounding busbar inside the cubicle, and reliably connected with the secondary grounding network. Device wiring should be consistent with the wiring diagram requirements.

The device features a 6U height, 1/1 19 "or 1/2 19" width chassis, integral panel and pluggable functional modules with lock. The device is designed conforming to IEC 60297-3. Embedded Installation as a whole, rear wiring. The current/ voltage connector structure are in the same size, and can be expanded, combined flexibly. Installation hole size as below.

Attention! It is necessary to leave enough space top and bottom of the cut-out in the cubicle for heat emission of this relay.

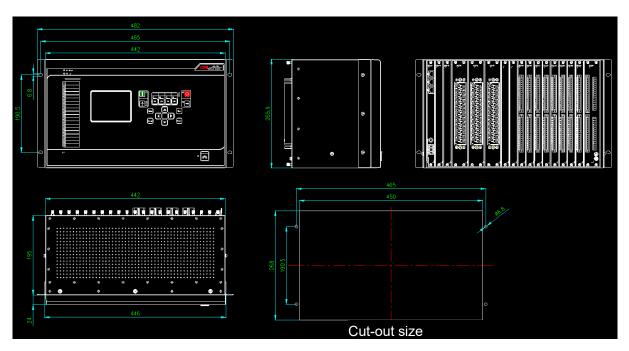


Figure 11.6.1 Dimensions of this relay and the cut-out in the cubicle (unit: mm)

11.7 Electrical Installation and Wiring

11.7.1 TA Circuit Connection

According to the wiring diagram of the device, connect the terminal block of rear AC module with the CT loop using multiple wires, of which the cross-sectional area should be $2.5 \sim 4.0$ mm².

11.7.2 Power Supply, TV, BI and BO, Signal Wiring

According to the wiring diagram of the device, connect the AC, Phoenix terminal of module and the terminal block in the cubicle side with multiple wires.

DC voltage power supply wiring power +, power - should be distinguish in different colors, for example power + (brown), power - (blue).

Power supply, binary inputs & outputs: stranded conductor, 1.0mm² ~ 2.5mm².

AC voltage inputs: stranded conductor, 1.5mm².

Grounding: braided copper cable, 2.5mm² ~ 6.0mm².

For wires connected to two points, there should be no joint in the middle, and the wire core should not be damaged. If the wire length is not enough during the process of wiring or rewiring, the worker must replace it. There should be no excess wire in the slot. If it is required to remove the wire, the whole wire must be completely removed.

When wiring the AC terminal of module, current and voltage wires must adopt 12mm size cable lug, to avoid loose contact. Strictly prohibit electric screwdriver, so as to avoid terminals damage.

Attention! Never allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerously high voltage.

11.7.3 Grounding

Use a yellow-green multi-core cable with a cross-section of at least 2.5 mm² to connect the grounded copper bars. The cubicle should reliably connected to the secondary ground network.

11.7.4 Shielded cable connection

When using a shielded cable, connect the shielded cable to ground and follow the engineering application method. This includes checking of the appropriate grounding point near the device, such as the grounding point inside the cubicle and the grounding point near the measurement source. Ensure a single shield connection a suitable short cross-sectional wire (maximum 10CM) for ground connection.

Signal Cable

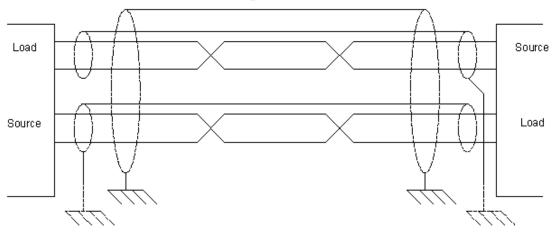


Figure 11.7.1 Shielded cable connection

11.7.5 Install the optical cable

Care should be taken to handle the cable without substantial bending. The minimum curvature radius of the plastic optical fiber is 15 cm and the glass optical fiber is 25 cm. To use the cable clamp, a loose buffer sleeve should be used.

When connecting or removing the optical fiber, please take hold of the connection ends. Do not take the cable. Do not twist, stretch, bend the cable. Invisible damage can increase the attenuation of the fiber and can destroy the communication.

11.7.6 Install the communication cable

When using electrical connections between the protection device and the communication device, or point-to-point electrical connections between the two protection devices, it is important to install the cables carefully. Due to the low electrical level of communication signals, the factors susceptible to noise interference must be considered.

The best way is to use shielded twisted pair(STP), one for each twisted pair and the other for the all twisted pairs for surround shielding. Each signal uses the twisted pair shown in the following figure to shield each individual twisted-pair cable by connecting its internal shielded cable to the device's ground connection or, alternatively, to a device near the signal transmitter Connected, at the receiving end, shielded line let it hang in the air, not connected with the ground. The outer shield surrounding all twisted pairs is physically connected near each end of the equipment.

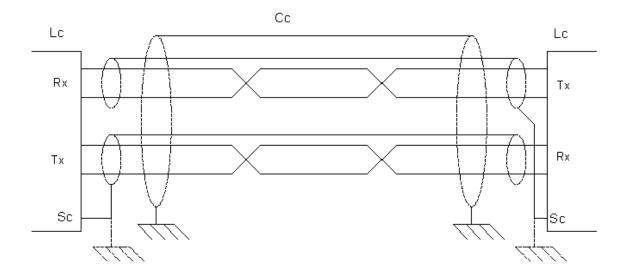


Figure 11.7.2 Communication cable connection

Cc: communication cable

Lc: line connector

Rx: receive signal input

Tx: transmit signal output

Sc: shielded (grounding) connection

11.8 Installation check

11.8.1 Check the installation

Check that all terminal screws with external wiring are tightened, the wiring is neat, and all wiring labels are clearly defined.

11.8.2 Confirm the hardware and software version

Hardware and software version information is available on the device label. After the device is powered on, the software version can also be checked through the LCD interface.

11.8.3 Device start

if confirm that the wiring is correct during the installation check, you can supply device with power and start it.

Configuration file needs to read during device startup process. It needs a certain period of time for the startup process. The startup time is related to the size of configuration file. In general, the startup time is less than 1 minute.

The "HEALTHY" indicator lights up when the unit starts up normally. If a fault is detected during the startup procedure, the "ALARM" indicator is lit and the internal fault code, alarm information can be checked via LEDs.

152

12 Maintenance

12.1 Maintenance General

A strict and detailed laboratory test is carried out in the development and design of the relay device. All the relay devices are strictly tested according to national or international standards.

The relay device has powerful real-time self-check capability. However, during the long time running of the relay device, there is no real time supervision for the input terminals and output circuits. Therefore, some periodic tests should be done to ensure that the relay is functioning correctly and the external wiring is intact.

The maintenance of the relay device mainly includes the following two conditions:

- Regular testing;
- Failure maintenance

12.2 Regular Testing

Regular testing is to test the normal relay devices in a certain period of time, so as to find potential defects or failures and eliminate hidden dangers to ensure the healthy operation of the devices.

The regular testing cycle depends on a number of factors, such as the environment conditions, the complexity, etc. Advices of CYG are as the following:

- The relay device must be tested for the first time in the first year of operation, mainly including protection logic, AC circuit, tripping circuit and power supply circuit.
- A partial test should be carried out every 3 years, mainly including the inspection of the AC circuit and the tripping circuit.
- An overall test should be carried out every 6 year, mainly including the protection function logic, the AC circuit, the tripping and closing circuit, the power supply circuit.

12.3 Failure Maintenance

Failure maintenance refers to the maintenance of a faulty relay device.

12.3.1 Hardware Failure

- 1) Check whether the hardware is in trouble or not according to the device alarm signal.
- 2) visual check of the device
 - Check whether the device has obvious physical fault
 - If you can find a clear physical fault point of the device, please contact CYG for repair or replacement
- 3) Confirm the scope of the fault
 - Check whether this fault is caused by an external circuit.
 - Carry out the input and output test for the relay device by test instrument.

• If it is determined that the fault belongs to the relay device, please contact CYG for repair or replacement

12.3.2 Software Failure

- 1) Check whether the hardware is in trouble or not according to the device alarm signal.
- 2) Try to restart the device and check if the fault is recoverable if possible.
- 3) If the fault is not recoverable, please contact CYG for repair or replacement

12.4 Replace Failed Modules

If the failure is identified to be in the relay module and the user has spare modules, the user can replace the failed modules to recover the protection device.

Repair at the site should be limited to module replacement. Maintenance at the component level is not recommended.

Before replacement, the user should check that the replacement module has an identical module name and hardware type-form as the removed module. Furthermore, the replaced module should have the same software version. For the replaced analog input module and power supply module, it should be confirmed of the same ratings.

NOTICE!

After replacing modules, it must be checked that the same configuration is set before and after the replacement. If it is not the case, there is a danger of the unintended operation of switchgear taking place or of relay device not running correctly. Persons may also be in danger.

Units and modules must only be replaced while the power supply is switched off and only by appropriately trained and qualified personnel. Strictly observe the basic precautions to guard against electrostatic discharge.

Take anti-static measures such as wearing an earthed wrist band and placing modules on an earthed conductive mat when handling a module. Otherwise, the electronic components may suffer damage. After replacing the main CPU module, check the settings and configurations.

13 Decommissioning and Disposal

13.1 Decommissioning

13.1.1 Switching off

To switch off this relay, break down the cable connected to the power supply module or switch off the external miniature circuit breaker.

13.1.2 Disconnecting cables

Disconnect the cables in accordance with the rules and recommendations made by relational department.

DANGER!

Before disconnecting the power supply cables that connected with the power supply module of this relay, make sure that the external miniature circuit breaker of the power supply is switched off.

DANGER!

To decline the possibility of electrical shock, all current terminal should be shorted before attempting to remove or replace any modules.

13.1.3 Dismantling

The rack of this relay may be removed from the system cubicle, after which the cubicles may also be removed.

DANGER!

When the station is in operation, make sure that there is an adequate safety distance to other operating parts or equipments, especially as dismantling is often performed by unskilled personnel.

13.2 Disposal

In every country there are companies specialized in the proper disposal of electronic waste.

NOTICE!

Each module used in the device is fixed to several specific module type, as oftenly indicated with a label on the backside of the chassis. There are some chances that the modules will be damaged if they are installed in the wrong chassis slot. When removing and replacing modules, it is best to use the label in the chassis as a indicator, so as to make sure each module is installed in the proper slot.

NOTICE!

Strictly observe all local and national regulations when disposing of the device.

14 Manual Version History

In the current version of the instruction manual, several descriptions on existing features have been modified.

Manual Version		Software		Department of change	
Source	New	Version	Date	Description of change	
Beta	1.00	1.00	2014-04-15	Form the original manual.	
				Update the number of the binary inputs and binary	
				outputs	
1.00	1.01	1.01	2015-05-21	Add the binary input hardware demo diagrams in the	
1.00	1.01	1.01		binary input tables.	
				Update the description of IEC61850 dual-MMS	
				Ethernet.	
				Add parameters of fault location function.	
1.01	1.02	1.02	2016-01-24	Output TEMP_RL is added Internal improvements.	
				Update the configurable signals.	
		1.10	2016-08-16	Update the communication description.	
1.02	1.03			Update the mechanical specifications.	
1.02	1.02 1.03			Update the main CPU module picture.	
				Update the setting list.	
		1.20		Update all the protection functions.	
			2017-12-16	Add the "4.2 Supervision Alarm and Block" chapter	
				Increase the amount of the terminal of BI module.	
1.03	2.01			Update the logic diagram of the Three-phase thermal	
				overload protection.	
				Update the content of the "9 Communication	
				Protocol" chapter.	
2.01	2.02	2.00	2018-2-28	Modify the description of the protection functions.	
2.01	2.02	2.00	2010 2 20	Add programmable IDMT function	
		2.03	2018-9-21	Modify the description of the protection function	
2.02	2.03			blocks.	
				Add Chapter 9.6.	
			Add the tirp time parameters of busbar differential		
		4 2.03	2019-10-26	protection	
2.03	2.04			Add the description of overvoltage protection and	
				undervoltage protection.	
				Modify the description of the protection functions.	
				Modify parameters of electrical specifications.	

Table 14-1 Manual version and modification history records