PRS-778 TransformerProtection Instruction Manual

CYG SUNRI CO., LTD.

Preface

User's Guideline

This instruction manual contains full information of the equipment, including function descriptions, logic diagrams, inputsignals, output signals, setting parameters and technical parameters. It also list the operations on safe handling, commissioning and maintaining of this equipment. The instruction manual can be can be used as a technical reference during the whole product life cycle.

Documentationand manufactured equipments purchased fromCYG SUNRI CO., LTD.are dispatched separately due to the necessary manufacturing period.Therefor, they sometimes may not reach the recipients at the same time. Therefore this manual is provided as a technical reference to commission the equipment.

The installation and commissioning personnel should read all relevant chapters carefullyand get a thorough knowledge of the contents of this manual, before conducting any operation to the equipment. In this way, the personnel cangetthe required knowledge in handling electronic equipment.

This manual contains a security chapter which describes the safety precautions recommended when using the equipment. Before installing and using the equipment, this chapter is recommended to be thoroughly read and understood.

Personnel Security

The content in this chapter specifically describes to prevent and reduce the safety accidents in electric power production and construction processures, to ensure the personal safety and health of employees in production activities and to ensure the power grids stable operation and reliable power supply.

Any kind of direcily touching with the metal parts of the electrical equipment should be avoided when electrical equipment is on operation, because of thepotential electric shock risk. Neglecting warning notices should be prevent because the improperly operation may damage the device, even cause personnel injury.

The good operating condition of the equipment depends on proper shipping and handling, proper storage, installation, commissioning and maintenance. Therefore, only qualified personnel should be allowed to operate the equipment. Intended personnel are individuals who:

- Have a thorough knowledge of protection systems, protection equipment, protection functions and the configured functional logic in theIEDs;
- Have a basic knowledgein the installation, commissioning, and operation of the equipment;
- Are familiar with the working field where it is being installed;
- Are able to safely perform operations in accordance with accepted safety engineering steps;

- Are authorized to energize and de-energize equipment, and to isolate, ground, and label it;
- Are trained in the maintanence and use of safety apparatus in accordance with safety engineering regulations;
- Have been trained in first aid if any emergency situations happen.

Warning Indications

The following indicators and standard definitions are used:

DANGER! means that death, severe personal injury and considerable equipment damage will occur if safety precautions are disregarded.

WARNING! means that death, severe personal and considerable equipment damage could occur if safety precautions are disregarded.

CAUTION! means that light personal injury or equipment damage may occur if safety precautions are disregarded.

NOTICE is particularly applies to damage to device and to resulting damage of the protected equipment.

DANGER!

NEVER allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerously high voltage.

WARNING!

ONLY qualified personnel should work on or in the vicinity of this device. This personnel **MUST** be familiar with all safety regulations and service procedures described in this manual. During operating of electrical device, certain part of the device is under high voltage. Severe personal injury and significant device damage could result from improper behavior.

WARNING!

Do **NOT** touch the exposed terminals of this device while the power supply is on. The generated high voltage causes death, injury, and device damage.

WARNING!

Thirty seconds is **NECESSARY** for discharging the voltage. Hazardous voltage can be

present in the DC circuit just after switching off the DC power supply.

CAUTION!

• Earthing

Securely earthed the earthing terminal of the device.

• Operating environment

ONLY use the device within the range of ambient environment and in an environment free of abnormal vibration.

Ratings

Check the input ratings **BEFORE** applying AC voltage/current and power supply to the device.

• Printed circuit board

Do NOT attach or remove printed circuit board if the device is powered on.

• External circuit

Check the supply voltage used when connecting the device output contacts to external circuits, in order to prevent overheating.

• Connection cable

Carefully handle connection cables without applying excessive force.

NOTICE!

The firmware may be upgraded to add new features or enhance/modify existing features, please **MAKE SURE** that the version of this manual is compatible with the product in your hand.

Copyright © 2017 CYG SUNRI CO., LTD. All rights reserved.

This document contains confidential information of CYG SUNRI CO., LTD. Any improper use of the document or information contained herein in any way (including, but not limited to, total or partial disclosure, reproduction, or dissemination) by organizations or persons is prohibited. CYG SUNRI CO., LTD. reserve all rights to this document and to the information contained herein.

CYG SUNRI CO., LTD. has made every effort to ensure that this document is accurate. CYG SUNRI CO., LTD. disclaims liability for any

inaccuracies or omissions that may have occurred. If nevertheless any incorrect, misleading, or incomplete information are found, comments and suggestions for correction or improvement are greatly appreciated. CYG SUNRI CO., LTD. reserves the rights to upgrade the products and to make improvements to the documents without notice.

The users are responsible for understanding the information and should not rely on this information as absolute. If the users do act upon the suggestions contained in this document, the users should be responsible for themself and their actions.

CYG SUNRI CO., LTD.	Tel: +86-400-678-8099
Headquarters: No.13, Keji North 1st Road, North Area of Hi-tech Industral Park, Nanshan District, Shenzhen, China	Website: http://www.sznari.com
P/N: ZL_PRS-778_X_Instruction Manual_EN_Overseas General_X	Version: 2.04

Documentation Outline

The manual provides a functional and technical description of this relay and a comprehensive set of instructions for the relay's use and application.

All contents provided by this manual are summarized as below:

1 Briefly Introduction

Briefly introduce the application scope, the selectable functions and product features about this equipment.

2 Technical Specifications

Introduce the technical specifications about this relay, including electrical specifications, mechanical specifications, ambient temperature and humidity range, communication interface parameters, type tests, setting ranges and accuracy limits etc.

3 Protection Functions

Provide a comprehensive and detailed protection function description of all protection modules.

4 Supervision Functions

Introduce the automatic self-supervision function of this equipment.

5 Monitoring&Control

Introduce the measurement, controlling, signaling, recording and other functions of this relay.

6 Hardware

Introduce the main module functions of this relay and describe the definition of all terminals of each module.

7HUMAN MACHINE INTERFACE

Include all the menus of device.

8 Configuration Function

Introduce the configurable function (such as protection function configuration, LED configuration, binary input configuration and binary output configuration, analog quantities channels etc.) of this relay.

9 Communication Protocol

Introduce the communication interfaces and protocol that this relay contains. IEC60970-5-103 and IEC61850 protocols are introduced in details.

10Commissioning

Introduce how to commission this relay, check the calibration and test all the function of this relay.

11 Installation

Recommend on unpacking, handling, inspection and storage of this relay. A guide to the mechanical installation and electrical wiring of this relay is also provided, including earthing recommendations. Some typical wiring connection is demonstrated in this manual manual as well.

12 Maintenance

A general maintenance steps for this device is outlined.

13 Decommissioning and Disposal

A general decommissioning and disposal steps for this relay is outlined.

14 Manual Version History

List the instruction manual versions and their corresponding modification history records.

Table of contents

Preface	i
User's Guideline	i
Personnel Security	i
Warning Indications	ii
Documentation Outline	iv
Table of contents	1
1 Briefly Introduction	11
1.1 Application Scope	11
1.2 Product Function	11
1.3 Product Features	12
2 Technical Specifications	15
2.1 Electrical Specifications	15
2.1.1 Current Transformer Ratings	15
2.1.2 Voltage Transformer Ratings	
2.1.3 Auxiliary Power Supply	
2.1.4 Binary Input	
2.1.5 Binary Output	
2.2 Mechanical Specifications	16
2.3 Ambient Temperature and Humidity Range	17
2.4 Communication Interfaces	17
2.4.1 Ethernet Port	17
2.4.2 Serial Port	17
2.4.3 Time Synchronization	
2.4.4 Ethernet Port for Debugging	
2.5 Type Tests	18
2.5.1 Environmental Tests	
2.5.2 Mechanical Tests	19

2.5.3 Electrical Tests	
2.5.4 Electromagnetic Compatibility	
2.6 Terminals	21
2.7 Measurement Range and Accuracy	21
2.8 ProtectionFunction Features	21
2.8.1 Transformer differential protection	
2.8.2 Impedance Protection	
2.8.3 Directional Overcurrent Protection	
2.8.4 Thermal Overload Protection	
2.8.5 Directional Earth Fault Protection	
2.8.6 Restricted Earth Fault Protection	
2.8.7 Non-directional Instantaneous Earth Fault Protection	
2.8.8 Residual Overvoltage Protection	
2.8.9 Overvoltage protection	
2.8.10 Undervoltage Protection	
2.8.11 Overexcitation Protection	
2.8.12 Overfrequency protection	
2.8.13 Underfrequency protection	
2.8.14 Rate-of-change frequency protection	
3 Protection Functions	25
3.1 Overview	25
3.1.1 System Setting	
3.2 Transformer Differential Protection (87T)	
3.2.1 Overview	
3.2.2 Protection Principle	
3.2.3 Logic Diagram	
3.2.4 Settings	
3.3 Distance Protection 21	43
3.3.1 Overview	
3.3.2 Parameters	

CYG

3.9 Non-directional Instantaneous Earth Fault Protection(50N)	99
3.8.4 Settings	
3.8.3 Logic Diagram	97
3.8.2 Protection Principle	94
3.8.1 Overview	92
3.8 Winding Differential Protection (87W/N)	92
3.7.4 Settings	91
3.7.3 Logic Diagram	91
3.7.2 Protection Principle	88
3.7.1 Overview	
3.7 Restricted Earth Fault Protection (64REF)	87
3.6.4 Settings	
3.6.3 Logic Diagram	
3.6.2 Protection Principle	79
3.6.1 Overview	78
3.6 Earth Fault Protection (67N/50/51N)	78
3.5.4 Settings	77
3.5.3 Protection Principle	76
3.5.2 Logic Diagram	76
3.5.1 Overview	75
3.5 Thermal Overload Protection (49)	75
3.4.4 Settings	69
3.4.3 Logic Diagram	69
3.4.2 Protection Principle	65
3.4.1 Overview	61
3.4 Directional Overcurrent Protection (67P/50/51)	61
3.3.6 Power Swing Blocking Releasing PSBR	
3.3.5 Quadrilateral Distance Protection 21Q	
3.3.4 Mho Distance Protection 21M	
3.3.3 Fault Detector FD	

3.9.1 Overview	
3.9.2 Protection Principle	
3.9.3 Logic Diagram	
3.9.4 Settings	
3.10 Breaker Failure Protection (50BF)	101
3.10.1 Overview	
3.10.2 Protection Principle	
3.10.3 Logic Diagram	
3.10.4 Settings	
3.11 Residual Overvoltage Protection (59N)	104
3.11.1 Overview	
3.11.2 Protection Principle	
3.11.3 Logic Diagram	
3.11.4 Settings	
3.12 Three-phase overvoltage protection (59P)	
3.12.1 Overview	
3.12.2 Protection Principle	112
3.12.3 Logic Diagram	113
3.12.4 Settings	114
3.13 Three-phase Undervoltage Protection (27P)	116
3.13.1 Overview	116
3.13.2 Protection Principle	117
3.13.3 Logic Diagram	119
3.13.4 Settings	
3.14 Overexcitation Protection (24)	122
3.14.1 Overview	
3.14.2 Protection Principle	
3.14.3 Logic Diagram	
3.14.4 Settings	

3.15.1 Overview	
3.15.2 Protection Principle	
3.15.3 Logic Diagram	129
3.15.4 Settings	
3.16 Underfrequency Protection(81U)	131
3.16.1 Overview	
3.16.2 Protection Principle	
3.16.3 Logic Diagram	
3.16.4 Settings	
3.17 Rate-of-change of frequency protection (81R)	134
3.17.1 Overview	
3.17.2 Protection Principle	
3.17.3 Logic Diagram	
3.17.4 Settings	
3.18 Reactor differential protection (87R)	136
3.18.1 Overview	
3.18.2 Protection Principle	
3.18.3 Logic Diagram	
3.18.4 Settings	
3.19 Reactor zero-sequence differential protection (87N)	145
3.19 Reactor zero-sequence differential protection (87N)	145
 3.19 Reactor zero-sequence differential protection (87N) 3.19.1 Overview 3.19.2 Protection Principle 	145
 3.19 Reactor zero-sequence differential protection (87N) 3.19.1 Overview 3.19.2 Protection Principle 3.19.3 Logic Diagram 	145
 3.19 Reactor zero-sequence differential protection (87N) 3.19.1 Overview 3.19.2 Protection Principle 3.19.3 Logic Diagram 3.19.4 Settings 	145 145 145 148 148
 3.19 Reactor zero-sequence differential protection (87N)	
 3.19 Reactor zero-sequence differential protection (87N)	
 3.19 Reactor zero-sequence differential protection (87N)	

3.20.4 Settings	
3.21 Out-of-Step Protection 780	153
3.21.1 Overview	153
3.21.2 Protection Principle	154
3.21.3 Logic	158
3.21.4 Settings	160
3.22 Mechanical Relay Protection (MR)	161
3.22.1 Overview	161
3.22.2 Protection Principle	
3.22.3 Settings	163
4 Supervision	
4.1 Overview	164
4.2 Supervision Alarm and Block	164
4.3 Current circuit supervision(CTS)	166
4.3.1 Overview	
4.3.2 Logic Diagram	
4.3.3 Protection Principle	
4.4 Reactor Current circuit supervision(CTS)	168
4.4.1 Overview	
4.4.2 Logic Diagram	169
4.4.3 Protection Principle	
4.5 Fuse failure supervision(VTS)	169
4.5.1 Overview	
4.5.2 Logic Diagram	171
4.5.3 Protection Principle	171
4.6 Reactor Fuse failure supervision(VTS)	171
4.6.1 Overview	171
4.6.2 Logic Diagram	172
4.6.3 Protection Principle	

5 Monitoring&Control	173
5.1 Overview	173
5.2 Measurement	173
5.2.1 Protection Sampling	173
5.2.2 Metering	173
5.3 Apparatus Control	174
5.4 Signaling	174
5.5 Event Recording	175
5.6 Fault and Disturbance Recording	175
6 IED Hardware	
6.1 Overview	177
6.2 Hardware Module	180
6.3 Human Machine Interface Module	
6.4 Power Supply Module	181
6.5 Main CPU Module	183
6.6 AD module	185
6.7 Transformer Module	185
6.8 Binary Input Module	
6.9 Binary Output Module	190
6.10 Binary Input/Output Module	192
6.11 MR Plug-in Module (Mechanical Relay Input/Output)	194
7 HUMAN MACHINE INTERFACE	
7.1 Overview	196
7.1.1 Design Structure	
7.1.2 Function mode	
7.1.3 Operating panel keypad and keys	
7.1.4 Indication of LED	
7.1.5 Configurable keys	
7.2 LCD Diplay description of HMI	201
7.2.1 Ovierview	

7.2.2 Normal display structure of LCD	
7.2.3 Main menu display	
7.3 Sub menu functions of main menu	203
7.3.1 Physical Information	
7.3.2 Review Information	
7.3.3 Monitoring Information	
7.3.4 Event Information	
7.3.5 Record Information	
7.3.6 Setting Information	
7.3.7 Configuration Information	
7.3.8 Test Information	
7.3.9 Clear Information	
7.3.10 Language Information	
8 Configurable Function	
8.1 General Description	230
8.2 Introduction of PRS IED StudioSoftware	230
9 Communication Protocol	
9.1 Overview	230
9.2 Rear Communication Interface	230
9.2.1 Ethernet Interface	
9.3 Network Topoloty	231
9.3.1 Star Topology	
9.3.2 PRP Topology	
9.3.3 RSTP Topology	
9.4 IEC61850Protocol	231
9.4.1 Overview	
9.4.2 Communication Profiles	
9.4.3 Data set and control block	
9.4.4 Logic nodes and data modeling	
9.5 DNP3 0 Protocol	240

CYG

9.5.2 Link Layer Functions	
9.5.3 Transport Functions	
9.5.4 Application Layer Functions	
9.6 IEEE 1588-2008 Protocol	242
9.6.1 Overview	
9.6.2 Time Synchronization	
10 Commissioning	
10.1 General	243
10.2 Safety Instructions	243
10.2.1 Safety Identification	
10.2.2 Safety Identification Examples	
10.3 Commission Tools	245
10.3.1 Instrumentation and Meters Notice:	
10.3.2 Tools Requirement:	
10.4 Commission Preparation	245
10.4.1 Basic Knowledge	
10.4.1 Basic Knowledge 10.4.2 Operation Preparation	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation 10.5 Product Checks 	245 246 246
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation 10.5 Product Checks 10.5.1 Document Check 	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation 10.5 Product Checks 10.5.1 Document Check 10.5.2 Appearance Inspection 10.5.3 Insulation Check 	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation	
 10.4.1 Basic Knowledge	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation 10.5 Product Checks 10.5.1 Document Check 10.5.2 Appearance Inspection 10.5.3 Insulation Check 10.5.4 External Wiring Check 10.5.5 Test Category 10.6 With the Relay Energized 10.6.1 LCD Display Check 10.6.2 Date and Time 	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation 10.5 Product Checks 10.5.1 Document Check 10.5.2 Appearance Inspection 10.5.3 Insulation Check 10.5.4 External Wiring Check 10.5.5 Test Category 10.6 With the Relay Energized 10.6.1 LCD Display Check 10.6.2 Date and Time 10.6.3 Light Emitting Diodes (LEDs) 	
 10.4.1 Basic Knowledge 10.4.2 Operation Preparation 10.5 Product Checks 10.5.1 Document Check 10.5.2 Appearance Inspection 10.5.3 Insulation Check 10.5.4 External Wiring Check 10.5.5 Test Category 10.6 With the Relay Energized 10.6.1 LCD Display Check 10.6.2 Date and Time 10.6.3 Light Emitting Diodes (LEDs) 10.6.4 Test the AC Current Circuit 	

10.6.6 Test the Binary Inputs	
10.6.7 Test the Binary Onputs	
10.6.8 Protection Function Checks	
10.6.9 Printing Function Checks	
10.6.10 On-load Checks	
10.6.11 Final Checks	
11 Installation	253
11.1 General	253
11.2 Safety Instructions	253
11.3 Checking the Shipment	253
11.4 Material and Tools Required	254
11.5 Device Location and Ambient Conditions	254
11.6 Mechanical Installation	255
11.7 Electrical Installation and Wiring	257
11.7.1 TACircuit Connection	
11.7.2 Power Supply, VT, BI and BO, Signal Wiring	
11.7.3 Grounding	
11.7.4 Shielded cable connection	
11.7.5 Install the optical cable	
11.7.6 Install the communication cable	
11.8 Installationcheck	259
11.8.1 Checktheinstallation	
11.8.2 Confirm the hardware and software version	
11.8.3 Devicestart	
12 Maintenance	
12.1 Maintenance General	261
12.2 Regular Testing	261
12.3 Failure Maintenance	261
12.3.1 Hardware Failure	
12.3.2 Software Failure	

1.1

12.4 Replace Failed Modules	
13 Decommissioning and Disposal	
13.1 Decommissioning	
13.1.1 Switching off	
13.1.2 Disconnecting cables	
13.1.3 Dismantling	
13.2 Disposal	
14 Manual Version History	

1 Briefly Introduction

1.1 Application Scope

The PRS-778 is a numerical distributed transformer protection intended for protecting and monitoring various transformers of various voltage level, ranging from 1000kV to 110kV. PRS-778 can detect and clear all types of internal faults.

PRS-778 provides fast and selective protection, monitoring and control for two and three-winding transformers, autotransformers, step-up transformers and generator-transformer block units, phase shifting transformers, special railway transformers, shunt reactors, etc. The relay can operate correctly over a wide frequency range in order to accommodate power system frequency variations during disturbances and generator start-up and shut-down.

This relay can sample the analog values from the traditional instrument transformers, or receive the sampled values from the electronic current and voltage transformers (via a merging unit). The binary inputs and outputs of this relay can be configured according to the demands of a practical engineering through the PRS IED Studio configuration tool auxiliary software, which can meet some special requirements of protection and control functions.

This relay can fully support the IEC61850 communication protocol and GOOSE function, and can completely meet the demands of a modern digitalized substation.

1.2 Product Function

Table 1.2-1	Functions	included	in the	IEDs
-------------	-----------	----------	--------	------

Description	IEC 60617	ANSI	CYG Code
Transformer differential protection	3ld/l	87T	87T

Description	IEC 60617	ANSI	CYG Code
Winding Differential Protection	3ld/l	87W	87W
MhoImpedance protection	Z<	21	21M
Quadrilateral Impedance protection,	Z<	21	21Q
Power swing detection	Zpsb	68	68PS
Four stage directional overcurrent	215	67P	67D
protection	210	07F	07F
Three-phase thermal overload		40	40
protection	-	49	49
Earth Fault protection	IN>	51G_67G	67N
Restricted Earth Fault protection	IdN/I	87NL	64REF
Non-directional Instantaneous earth	IN	50N	50N
fault protection	11122	5014	5014
Breaker Failure Protection	310>	50BE	50BE
Breaker Failure Frotection	>	3001	3001
Threestage residual overvoltage	3110	59N	59N
protection		0011	
Two stagethree-phase overvoltage	3115	59P	59P
protection			
Two stagethree-phaseundervoltage	3U<	27P	27P
protection		211	211
Overexcitation protection	U/f	24	24
Overfrequency protection	f>	81O	81O
Underfrequency protection	f<	81U	81U
Rate-of-change frequency protection	Df/dt<>	81R	81R
Reactor differential protection	3ld/l	87R	87R
Reactor zero-sequence differential	IdN/I	97N	97N
protection		0711	0711
Reactor interturn Protection	-	21IT	21IT
Current circuit supervision	-	CTS	CTS
Fuse failure supervision	-	-	VTS

1.3 Product Features

(1.5

- This device is based on a 32-bit high performance dual-core processor, internal high speed bus and intelligent I/O ports, and the hardware is in modularized design and can be configured flexibly, featuring interchangeability and easy extension and maintenance.
- Modularized hardware design makes this relay be easily upgraded or repaired by a qualified service person. Various function optional modules can satisfy various situations according to the different requirements of the users..
- The adoption of 16-bit A/D converter and the dual-channel sampling technology can ensure the accuracy and reliability of protection sampling and the correctness of protection operation. It also provides dedicated current transformers for metering, and ensures the high accuracy of

telemetering with 40-point high speed sampling rate per cycle.

- This device can sample the analog values from the traditional instrument transformers, or receive the sampled values from the electronic transformers. It can support the protocol IEC60044-8, IEC61850-9-2 and GOOSE.
- Various algorithms for protection and measurement have been completed in this device for the feature of electronic transformer sampling, such as the error prevention method of multi-algorithms data anomaly for the digital channels, to realize high accuracy and reliability under various conditions of network faults or communication interruption.
- This device has powerful GOOSE functions, and the connection and cooperation between some devices can be realized without using electrical cables, to facilitate the realization of such functions as simple bus differential protection, overload interlock shedding function and backup automatic transfer function etc.
- This device has fully realized the technology to integrate six functions into one device: protection, measurement, control, remote signaling, merging unit function and remote module functions, to improve the reliability.
- Various methods of GPS time synchronization are supported in this relay, including SNTP, IEEE1588,pulse per second (PPS) and IRIG-B synchronization.
- The protection modules are completely separated from other modules, and are independent in both hardware and software. The protection functions do not depend on the communication network, so the failure of communication network will not affect the normal operation of the protection functions.
- Mature protection configuration, fast speed and high security performance can meet the practical requirements. Each protective element is independent, so it is very convenient for whether adopting the selected protective element.
- This device constantly measures and calculates a large amount of analog quantities, such as phase voltage, phase-to-phase voltage, neutral voltage, phase current, neutral current, active power, reactive power, power factor and frequency etc.
- The human machine interface (HMI) with a small control module (a 240×128-dot LCD, a 9-key keypad and 20 LED indicators) on the front panel is very friendly and convenient to the user.
- This device can communicate with a SAS or RTU via different communication intermediates: thernet network, RS-485 serial ports. The communication protocol of this device is optional: IEC61850, IEC60870-5-103, DNP3.0 or ModBus.
- This device can detect the tripping circuit of the circuit breaker and monitor the operation (close or trip) time of a circuit breaker by checking the auxiliary contacts of the circuit breaker.
- Complete event recording function is provided: 64 latest protection operation reports, 1024 latest supervision records, 1024 latest control operation records, 1024 latest user operation records and 1024 latest records of time tagged sequence of event (SOE) can be recorded.
- Powerful fault and disturbance recording function is supported: 64 latest fault or disturbance

waves, the duration of a wave recording is configurable.

2 Technical Specifications

2.1 Electrical Specifications

2.1.1 Current Transformer Ratings

2.1.1 Current Transform	er Ratings	(2.5)
Reference		IEC 60255-1,IEC 60255-27
Rated frequency (fn)		50Hz, 60Hz
Nominal range		fn ± 5Hz
Rated current (In)		1/5A
	continuously	3xIn
Thermal withstand capability	for 10s	20×In
	for 1s	100×In
Burden		<0.05VA/phase @1A, <0.2VA/phase@5A

2.1.2 Voltage Transformer Ratings

Reference		IEC 60255-1, IEC 60255-27
Rated frequency (fn)		50Hz, 60Hz
Nominal range		fn ± 5Hz
Rated voltage (Un)		100V ~ 120V (phase-to-phase voltage)
	continuously	240V
Thermal withstand capability	10s	360V
	1s	400V
Burden at rated voltage		< 0.03VA/phase @57.7V

2.1.3 Auxiliary Power Supply

Reference	IEC 60255-1, IEC 60255-26	
Rated voltage	24VDC~250VDC, 48V~250VAC (1.4)	
Variation	80% ~ 120%	
Frequency	50/60Hz, ± 5Hz	
Maximum interruption time in the	0%Un,100ms;	
auxiliary DC voltage without resetting	40%Un,200ms; (2.6)	
the IED	70%Un,500ms	
	At the Un=DC220V	
Gradual shut down / Start up	Class C (60s shut down ramp, 5 min power off, 60s start up ramp)	
Ripple in the DC auxiliary voltage	Class A (15% of rated @200Hz, 220VDC)	
	≤20W (normal state)	
Maximum load of auxiliary voltage	≤35W (maximum state)	
supply	≤30W (normal state)	
	≪40W (maximum state)	

2.1.4 Binary Input

	Reference	IEC 60255-1, Clause:6.10.5
--	-----------	----------------------------

Binary input number	1/2 19" Case:Up to 18
	1/1 19" Case:Up to 36
Rated voltage	24VDC~250VDC, 64VAC~250VAC
Pickup voltage	55% ~ 70% rated voltage
"ON" value voltage	70% ~ 120% rated voltage
"OFF" value voltage	< 55% rated voltage
Maximum permitted voltage	120% rated voltage
Resolution of binary input signal	≤ 1ms
Resolution of SOE	≤ 1ms

2.1.5 Binary Output

2.1.5 Binary Output		
Reference	IEC 60255-1	
Item	Tripping output	Signal output
Pinen/ output number	1/2 19" Case:Up to 12	1/2 19" Case:Up to 11
Binary output number	1/1 19" Case:Up to 48	1/1 19" Case:Up to 54
Output model	Potential-free contact	Potential-free contact
Max system voltage	380Vac, 250Vdc	380Vac, 250Vdc
Voltage across open contact	1000V RMS for 1min	1000V RMS for 1min
	10A @ 380Vac;	5.0A @ 380Vac;
	10A @ 250Vd	5.0A @ 250Vdc
Short duration current	30A, 3s	204 15
Short duration current	50A, 1s	50A, 15
	1.00A @ 48Vdc, L/R=40ms	
	0.35A @ 110Vdc, L/R=40ms	0.60A @ 48Vdc, L/R=40ms
Breaking capacity	0.30A @ 125Vdc, L/R=40ms	0.10A @ 110Vdc, L/R=40ms
	0.20A @ 220Vdc, L/R=40ms	0.05A @ 220Vdc, L/R=40ms
	0.15A @ 250Vdc, L/R=40ms	
Pickup time	<5ms	< 10ms
Dropout time	< 5ms	< 8ms

2.2 Mechanical Specifications

Mounting Way	Flush mounted
Waight par device	1/2 19" Case: Approx. 9.9kg (fully equipped)
	1/1 19" Case: Approx.19.5kg (fully equipped)
Merchanical size	1/2 19" Case: 260mm*266 mm *217.7 mm
(width×high×deepth)	1/1 19" Case:482.6mm*266 mm *217.7 mm
Hole size (width high)	1/2 19" Case:227 mm *267 mm
Hole size (widthxhigh)	1/1 19" Case: 450 mm *267 mm
Display language	Optional: Chinese, English
Housing motorial	Metallic plates, parts and screws: Steel
Housing material	Plastic parts: Polycarbonate
Housing color	Silver grey
Location of terminal	Rear panel of the device

Protection class

IEC60225-1: 2009

Front side:IP40 (IP52 with seal strip) Rear side, connection terminals: IP20 Other Sides: IP40

2.3 Ambient Temperature and Humidity Range

Ι

Standard	IEC 60255-1:2009	
Operating temperature range	-40°C ~ +70°C	
Transport and storage temperature range	- 40°C ~ +70°C	2.7
Damp heat steady	+40°C 93%humidity 16h2.10	
Damp-heat test, cyclic	6 cycles, +25 $^\circ$ C to +55 $^\circ$ C, Humidity 97% to 93%	

2.4 Communication Interfaces

2.4.1 Ethernet Port

Medium		Parameters		
		Port number	3	
	Electrical	Connector type	RJ-	-45
		Transmission rate	100	0Mbits/s
		Transmission standard	100)Base-TX
		Transmission distance	≤ 1	00m
Ethorpoty		Protocol	IEC	C60870-5-103:1997, IEC61850 etc.
Electrical		Safety level	Iso	lation to ELV level
		Port number	3	
Ontical		Connector type	LC	
Optical	Optical	Transmission rate	100Mbits/s	
		Transmission standard	100Base-FX	
		Optical fiber type	Multi-mode	
		Wavelength	131	l0nm
		Transmission distance	≤ 2	000m
		Protocol	IEC	C60870-5-103:1997, IEC61850 etc.
		For Process Level (If reqired)		
	Medium			Parameters
		Port number		4
		Connector type		LC
Optical		Transmission rate		100Mbits/s
		Transmission standard		100Base-FX
		Optical fiber type		Multi-mode
		Wavelength		1310nm
		Transmission distance		≤ 2000m

2.4.2 Serial Port

Medium	Parameters

2.8

	Port number	2
	Baud rate	4800 ~ 115200bps
	Transmission distance	≤ 500m @ 4800bps
K3-465 (EIA)	Maximal capacity	32
	Protocol	IEC60870-5-103:1997, DNP3.0 etc.
	Safety level	Isolation to ELV level

2.4.3 Time Synchronization

Medium	Parameters		
	Port number	1	
	Transmission distance	≤ 500m	
RS-485 (EIA)	Maximal capacity	32	
	Timing standard	IRIG-B	
	Safety level	Isolation to ELV level	
	Port number	1	
Optical Ethernat	Connector type	ST	
Optical Ethemet	Transmission distance	≤ 2000m	
	Timing standard	IRIG-B	
IEEE 1588	Accuracy	≤ 1ms	

2.4.4 Ethernet Port for Debugging

Medium	Parameters		
	Port number	1	
	Connector type	RJ-45	
Electrical Ethernet	Transmission rate	100Mbits/s	
(in front panel)	Transmission standard	100Base-TX	
	Transmission distance	≤ 100m	
	Safety level	Isolation to ELV level	

2.5 Type Tests

2.5.1 Environmental Tests

Dry heat operation test	IEC 60068-2-2, IEC 60255-27	16h, +70℃
Cold operation test	IEC 60068-2-1, IEC 60255-27	16h, -40 ℃
Dry heat storage test	IEC 60068-2-2, IEC 60255-27	16h , +70℃
Cold storage test	IEC 60068-2-1, IEC 60255-27	16h , -40℃
Damp heat steady state	IEC	
test	60255-27,Clause10.5.1.5	+40°C 93%humidity
+Verifcation of function	IEC 60255-1,Clause	

&dielectric (10 days)	6.12.3.6	
	IEC 60068-2-78	
Damp-heat test, cyclic	IEC 60068-2-30, IEC 60255-27	6 cycles, +25 $^\circ\!\mathrm{C}$ to +40 $^\circ\!\mathrm{C}$, Humidity 97% to 93%
Change of temperature test	IEC 60068-2-14	5 Cycles , 1 $^\circ \mathrm{C}$ /min, $~$ -40 $^\circ \mathrm{C}$ to +70 $^\circ \mathrm{C}$

2.5.2 Mechanical Tests

Vibration response test	IEC 60255-21-1, IEC 60255-27	Class 1: Vibration Response: Class 1 (10-59Hz: 0.035mm, 59-150Hz: 0.5gn)
Vibration Endurance:	IEC 60255-21-1, IEC 60255-27	Class 1 (10-150Hz: 1gn)
Shock Response	IEC 60255-21-2, IEC 60255-27	Class 1 (5gn)
Shock Withstands	IEC 60255-21-2, IEC 60255-27	Class 1 (15gn)
Bump	IEC 60255-21-2, IEC 60255-27	Class 1(10gn)
Seismic +Verifcation of function	IEC 60255-21-3 IEC 60255-1, Clause 6.13.3	Class I

2.5.3 Electrical Tests

Impulse Voltage Tests.	IEC 60255-27	Impulse test: 5kV (rated insulation voltage \leq 63V);Impulse test: 1kV (rated insulation voltage $>$ 63V);
AC or DC Dielectric Test	IEC 60255-27	dielectric 50,60Hz 5/60s DC 2.8KV AC 2KV
Insulation Resistance	IEC 60255-27	>100Mohm @500Vdc
Protective Bonding	IEC 60255 27	Test current DC20A, >12 Vac /Vdc, >60s,< 0.1
Resistance	IEC 00255-27	ohm

2.5.4 Electromagnetic Compatibility

Burst Disturbance Test / Damped Oscillatory Wave Immunity Test	IEC 60255-26, IEC 61000-4-18	For Power Supply, Binary Input / Output:Common Mode: 2.5kV, Differential Mode: 1kV;For Communication Port:Common Mode: 1kV
Electrostatic Discharge test	IEC 60255-26, IEC 61000-4-2	Contact Discharge: 8kV, Air Discharge: 15kV

Fast Transient test	IEC 60255-26, IEC 61000-4-4	(Power / Earth Port: 4kV, Signal / Control Port: 2kV)
Surge Immunity Test	IEC 60255-26, IEC 61000-4-5	For Power Supply, Binary Input / Output: L-E: 4kV, L-L: 2kV, voltage waveform: 1.2/50µs, current waveform: 8/20µs; Communication Port: L-E: 1kV, L-L: -, voltage waveform: 1.2/50µs, current waveform: 8/20µs)
Conducted radio interference test	IEC 60255-26, IEC 61000-4-6	150kHz~80MHz(Uo: 140dB μV or Uo: 10V)
Electromagnetic fields immunity	IEC 60255-26, IEC 61000-4-3	Test Field Strength: 10V/m , Sweep frequency: 80MHz - 1000MHz, Spot frequency: 80MHz, 160MHz, 450MHz, 900MHz @ 80% Modulation & Pulse
immunity to conduct, common mode disturbance in frequency range 0 Hz to 150KHz	61000-4-16	Level 4: continuous 30V,short duration 300V at 50/3,50,60Hz; 15Hz~150Hz:30-3 decreases at 20dB/decade; 150Hz~1.5kHz:3 constant; 1.5kHz~15kHz:3-30 increases at 20dB/decade; 15kHz~150kHz:30 constant
Power frequency magnetic fields	IEC 61000-4-8, IEC 60255-26	Continuous: 100A/m, Short Duration 1s to 3s: 1000A/m)
Pulse magnetic field immunity test	IEC 61000-4-9	Class 5: Current 6.4/16µs, 1000A/m
Damped oscillatory magnetic field immunity test	IEC 61000-4-10	Class 5: 0.1MHz&1MHz, 100A/m
Power frequency immunity tests	IEC 60255-26	Input: Class A,Common Mode: 300V, Differential Mode: 150V
Ring wave immunity test	IEC 61000-4-12	Ring Wave Class 4,4kV
Conducted RF interference on power supply terminals	IEC 60255-26, CISPR 22	Conducted Emission Limit for Auxiliary Power Supply Port : Frequency range: 0.15MHz - 0.5MHz (Quasi Peak: 79µV, Avg: 66µV), Frequency range: 0.5MHz - 30MHz (Quasi Peak: 73µV, Avg: 60µV);

1

Radiated interference	IEC 60255-26, CISPR 22	Radiated Emission Limit on Enclosure Port : Frequency range: 30MHz - 230MHz (Quasi Peak: 40µV), Frequency range: 230MHz - 1000MHz (Quasi Peak: 47µV)
-----------------------	------------------------	---

2.6 Terminals

Connection Type	Wire Size
CT and VT circuit connectiors	Screw terminals,4mm ² lead
Binary I/O connection system	Screw terminals, 2.5mm ² lead

2.7 Measurement Range and Accuracy (11)

Metering Item	Range	Accuracy
Phase range	0° ~ 360°	≤ 0.5% or ±1°
Frequency	35.00Hz ~ 70.00Hz	≤ 0.01Hz
Current	0.05ln <l<4.00ln< td=""><td>\pm0.5%ln, 0.05ln~1.00ln</td></l<4.00ln<>	\pm 0.5%ln, 0.05ln~1.00ln
(three phase 3lp)		\pm 0.5%l, 1.00ln~4.00ln
Voltage		\pm 0.5%Un, 0.05Un~1.00Un;
(Phase 3Up, Phase-to-Phase 3Upp)	0.0501<0<1.5001	\pm 0.5%U, 1.00Un~1.50Un

2.8 Protection Function Features

2.8.1 Transformer differential protection

2.8.1.1 Biased Differential Protection

Tolerance of 2 nd harmonic settings	0.01
Tolerance of 5 th harmonic settings	0.02
Tolerance of operating current	≤2.5% of operating current or 0.02In., whichever is greater
Operating time (without blocking criteria)	50Hz: ≤ 30ms (Id>2 times current setting) 60Hz: ≤ 25ms (Id>2 times current setting)

2.8.1.2 Instantaneous Differential Protection

Tolerance of current setting	≤2.5% of setting or 0.02In., whichever is greater
Operating time	50Hz: ≤ 20ms (Id>1.5 times current setting)
	60Hz: ≤ 20ms (Id>1.5 times current setting)

2.8.2 Impedance Protection

Accuracy	\leq 2.5% Setting or 0.02In, whichever is greater
Time delay accuracy	≤25ms(at 4 times current setting)

2.8.3 Directional Overcurrent Protection

Accuracy	\leq 2.5% Setting or 0.02In, whichever is greater
Resetting ratio	98%
Time delayaccuracy (definite-time characteristic)	≤1%Setting+30ms (at 2 times current setting)
Time delay accuracy (inverse-time characteristic)	\leq 2.5% of operating time or 30ms, whichever is greater
	(start value multiples in range of 1.220 when I> In)
	≤5.0% of operating time or 40ms, whichever is greater
	(start value multiples in range of 220 when $I \le In$)

2.8.4 Thermal Overload Protection

Accuracy	\leq 2.5% Setting or 0.02In, whichever is greater
Resetting ratio	98%
Time delay accuracy	\leq 2.5% of operating time or 30ms, whichever is greater
	(start value multiples in range of 1.220 when I> In)
	\leq 5.0% of operating time or 40ms, whichever is greater
	(start value multiples in range of 220 when I \leq In)

2.8.5 Directional Earth Fault Protection

Accuracy	\leq 2.5% Setting or 0.02In, whichever is greater
Resetting ratio	98%
Time delayaccuracy (definite-time characteristic)	≤1%Setting+30ms (at 2 times current setting)
Time delay accuracy (inverse-time characteristic)	\leq 2.5% of operating time or 30ms, whichever is greater
	(start value multiples in range of 1.220 when I> In)
	≤5.0% of operating time or 40ms, whichever is greater
	(start value multiples in range of 220 when I \leq In)

2.8.6 Restricted Earth Fault Protection

Accuracy	\leq 2.5% Setting or 0.02In, whichever is greater
Time delay accuracy	≤25ms(at 4 times current setting)

2.8.7 Non-directional Instantaneous Earth Fault Protection

Accuracy	\leq 2.5% Setting or 0.02In, whichever is greater
Resetting ratio	98%

2.8.8 Residual Overvoltage Protection

Accuracy	\leq 2.5% Setting or 0.01Un, whichever is greater
Resetting ratio	98%
Time delayaccuracy (definite-time characteristic)	≤1%Setting+30ms (at 1.2 times voltage setting)
Time delay accuracy (inverse-time characteristic)	\leq 2.5% of operating time or 30ms, whichever is greater
	(for voltage between 1.2 and 2 multiples of pickup)

2.8.9 Overvoltage protection

Accuracy	\leq 2.5% Setting or 0.01Un, whichever is greater
----------	---

Resetting ratio	98%		
Time delayaccuracy (definite-time characteristic)	≤1%Setting+30ms (at 1.2 times voltage setting)		
Time delay acquiracy (inverse time abaracteristic)	\leq 2.5% of operating time or 30ms, whichever is greater		
Time delay accuracy (inverse-time characteristic)	(for voltage between 1.2 and 2 multiples of pickup)		

2.8.10 Undervoltage Protection

Accuracy	\leq 2.5% Setting or 0.01Un, whichever is greater	
Resetting ratio	102%	
Time delayaccuracy (definite-time characteristic)	≤1%Setting+30ms (at 0.8 times voltage setting)	
Time delay accuracy (inverse time characteristic)	\leq 2.5% of operating time or 30ms, whichever is greater	
Time delay accuracy (inverse-time characteristic)	(for voltage between 0.5 and 0.8 multiples of pickup)	

2.8.11 Overexcitation Protection

Multiple setting of definitetime	1.0~1.6		
Multiple setting of inversetime	1.0~1.7		
Tolerance of Multiple setting	≤2.5% of setting or 0.01, whichever is greater		
Drop-off to pickup ratio	≥97%		
Operating time	50Hz: ≤25 ms (at 2 times current setting)		
	60Hz: ≤23 ms (at 2 times current setting)		
Time delay setting	0.1~9999 (s)		
Tolerance of time setting	≤1% of setting +30ms (at 2 times setting)		
Drop-off time	≤30ms		

2.8.12 Overfrequency protection

Accuracy	_≤0.02Hz		
Time delayaccuracy	≤1%Setting+30ms (at 1.2 times frequency setting)		

2.8.13 Underfrequency protection

Accuracy	_≤0.02Hz
Time delayaccuracy	\leq 1%Setting+30ms (at 0.8 times frequency setting)

2.8.14 Rate-of-change frequency protection

Frequency setting	45~60 (Hz)
Tolerance of frequency setting	≤ 0.02Hz
Time setting	0~100 (s)
Tolerance of time setting	≤1%Setting+100ms (at 1.2 times frequency setting)

3 Protection Functions

3.1 Overview

The PRS-778 relay is a microprocessor based relay which can provide mature protection for various primary equipments (generally all types of transformers etc.). The following sections detail the individual protection functions of this relay.

Category	Profession Vocabulary	Abbreviation	
	Time	Т	
	Phase	Ph	
	Direction	Dir	
	Overcurrent	OC	
	Curve	Curve	
	Temperature	Тетр	
	Characteristic	Char	
	Polarity	Pol	
	Quantity	Qua	
	Factor	Factor	
	Current	Cur	
	Residual Current	ResCur	
	Negative Current	NegCur	
	Positive Current	PosCur	
	Voltage	Vol	
Flootricity	Residual Voltage	ResVol	
Electricity	Negative Voltage	NegVol	
	Positive Voltage	PosVol	
	High Voltage	HigVol	
	Low Voltage	LowVol	
	thermal	Therm	
	Overload	OL	
	Negative	Neg	
	Sequence	Seq	
	Residual	Res	
	Beta	Beta	
	harmonic	Harm	
	Power	Pow	
	Earth-fault	EF	
	Failure	Fail	
	Impedence	Imp	
	Reactance	React	

The golssary will be listed in the below form.

Category	Profession Vocabulary	Abbreviation	
	Induction	Induct	
	Positive	Posi	
	Block	Blk	
	Enable	Ena	
	Operation	Ор	
	Trip	Tr	
	Protection	Prot	
	Mode	Mod	
	Forward	Fwd	
	Reverse	Rev	
	Constant	Const	
	External	Ex	
	Internal	In	
	Number	Num	
	Selector	Sel	
	Measurement	Meas	
	Parameter	Para	
	Multiplier	Mult	
	Minimum	Min	
	Alarm	Alm	
	Reclose	Recls	
Operation	Counter	Counter	
Operation	Correction	Correction	
	Available	Avai	
	Initial	Init	
	Reference	Ref	
	Normal	Norm	
	Restraint	Restr	
	Slope	Slope	
	deblock	Deblk	
	Winding	Wnd	
	Elimination	Elim	
	Nominal	Nom	
	Connection	Connection	
	Hysteresis	Hyst	
	Compensation	Comp	
	Check	Chk	
	Synchronize	Syn	
	Synchronization	Syn	
	Energize	Energ	
	Weigh	Weig	
	Activation / Activate	Activ	

Category	Profession Vocabulary	Abbreviation		
	Error	Err		
	Configuration	Cfg		
	Parameter	Para		
	Management	Mana		
	Interrupt	Intr		
	SelfCheck	SelfChk		
	Start	Str		
	Generator	Gen		
	Motor	Motor		
	Rotor	Rotor		
	Stator	Stator		
	Busbar	Bus		
	Transformer	TF		
Apparatus	Transmission Line	TL		
	Line	Line		
	Capacitor	Сар		
	Reactor	Reac		
	Resistor	Resis		
	Switch	Sw		
	Component	Comp		

3.1.1 System Setting

NO	Name	Range	Unit	Step	Default	Description
1	Sn	0.1~3000	MVA	0.1	200	Transformer or reactor capacity
2	Un_HV	0.1~1200	kV	0.01	110	Rated voltage at HV side
3	Un_MV	0.1~1200	kV	0.01	35	Rated voltage at MV side
4	Un_LV	0.1~1200	kV	0.01	10	Rated voltage at LV side
						Y/ $ riangle$ Type at HV side
5	Phi_HV	0~1		1	0	0: Ү Туре
						1:∆Туре
6	Phi_MV	0~11		1	0	Clock connection at MV side
7	Phi_LV	0~11		1	11	Clock connection at LV side
8	VT1n_HV	0.1~1200	V	0.01	110	Primary value of VT at HV side
9	VT1n_MV	0.1~1200	V	0.01	35	Primary value of VT at MV side
10	VT1n_LV	0.1~1200	V	0.01	10	Primary value of VT at LV side
11	VT2n	30~300	V	0.01	100	Secondary value of VT
12	l1n_H1V	0~12000	А	1	1200	Primary value of CT at H1V side
13	l1n_H2V	0~12000	А	1	1200	Primary value of CT at H2V side
14	l1n_M1V	0~12000	А	1	2000	Primary value of CT at M1V side
15	l1n_M2V	0~12000	А	1	2000	Primary value of CT at M2V side

Table 3.1.1 Settings of System

NO	Name	Range	Unit	Step	Default	Description	
16	l1n_L1V	0~12000	А	1	4000	Primary value of CT at L1V side	
17	l1n_L2V	0~12000	А	1	4000	Primary value of CT at L2V side	
18	l2n_H1V	1 or 5	А	4	1	Secondary value of CT at H1V side	
19	l2n_H2V	1 or 5	А	4	1	Secondary value of CT at H2V side	
20	l2n_M1V	1 or 5	А	4	1	Secondary value of CT at M1V side	
21	l2n_M2V	1 or 5	А	4	1	Secondary value of CT at M2V side	
22	l2n_L1V	1 or 5	А	4	1	Secondary value of CT at L1V side	
23	l2n_L2V	1 or 5	А	4	1	Secondary value of CT at L2V side	
24		0 12000	^	1	1200	Primary value of zero-sequence CT at	
24		0~12000	A	1	1200	HV side	
25		0 12000	^	1	2000	Primary value of zero-sequence CT at	
25		0~12000	A	1	2000	MV side	
26	l1n LVN	0~12000	Δ	1	4000	Primary value of zero-sequence CT at	
20		0~12000	~	1 4000	LV side		
27	l2n H\/N	1 or 5	A 4	A 4		1	Secondary value of zero-sequence CT
21	1211_11111				4	1	at HV side
28	I2n M\/N	1 or 5	Δ	4	1	Secondary value of zero-sequence CT	
20		1013	~	-	'	at MV side	
29	I2n IVN	1 or 5	5 A 4			1	Secondary value of zero-sequence CT
20		1015		т	•	at LV side	
		I0_Rem_LV_En 0,1		1	0	Whether theZero sequence current is	
30	I0_Rem_LV_En 0,1 1					filtered off the low voltage side	
					Ŭ	0: disable	
					1: enable		

Example for Connection Scheme:

1) If the project uses Yyd-11.The setting Phi_HV=0,Phi_MV=12,Phi_LV=11;

2) If the project uses Ydd-11.The setting Phi_HV=0,Phi_MV=11,Phi_LV=11;

3) If the project uses Dyy-11.The setting $Phi_HV=1$, $Phi_MV=11$, $Phi_LV=11$;

4) If the project uses Ddy-11.The setting Phi HV=1,Phi MV=12,Phi_LV=11;

3.2 Transformer Differential Protection (87T)

3.2.1 Overview

In electrical power system or electrical power industry, power transformer is the one of the most precious and main important primary equipment. For this main point of view, the protection of power transformer is very important task. If some kind of trouble or fault situation happen in the protected zone of the power transformer, then need to clear this trouble or fault as soon as possible. Transformer differential protection (87T) is specially designed for such kind of trouble or fault situation to protect transformer from maximum cause of injuries or harm and operate the protection as quick as possible.

3.1

Transformer differential protection (87T) have two dependable operating function of element likes biased differential element and instantaneous differential element.

- 1) Biased differential element is operation based on with three characteristics slope.
- 2) Instantaneous differential element increase the operating speed of protection during internal fault of transformer without three characteristics slope of biased differential element and blocking function (CT saturation, CT failure and Harmonics effect).
- 3) Some other important and superior special functions of 87T protection are:
 - Meticulousphase compensation IED calculation criteria.
 - Accurate and fast fault tracking capability.
 - Inrush current distinguish operating principle.
 - Special capability to detect overexcitation condition of transformer.

Above mentioned these four element of transformer differential protection function are highly proved to sense quickly any abnormal situation in protected zone of transformer and in case of any abnormalty is detected then very fast trip command is issued.

Notice!

Point of view of user's project and real time experience, some of the pretection function of transformer differential protection (87T) are enable or disable according to the customer's or user's demand of situation.

3.2.1.1 Function Block

3.2.1.2 Signals

Table 3.2-187T Input Signals

NO.	Signal	Description
1	lda, ldb, ldc	Three phase differential current of 87T
2	87T_Blk	Block signal of 87T

Table 3.2-287T Output Signals

NO.	Signal	Description				
1	87T _Str	Start signal of differential from 87T				
2	87T _Str_A	Start_A signal of differential from 87T				
3	87T _Str_B	Start_B signal of differential from 87T				
4	87T _Str_C	Start_C signal of differential from 87T				
5	87T_ Op	Operation signal of differential from 87T				
6	87T_Inst_Str	Start signal of instantaneous differential from 87T				

NO.	Signal	Description			
7	87T_Inst_Str_A	Start_A signal of instantaneous differential from 87T			
8	87T_Inst_Str_B	Start_B signal of instantaneous differential from 87T			
9	87T_Inst_Str_C	Start_C signal of instantaneous differential from 87T			
10	87T_ Inst_Op	Operation signal of instantaneous differential from 87T			
11	87T_Inrush_A	Inrush_A Block signal from 87T			
12	87T_Inrush_B	Inrush_B Block signal from 87T			
13	87T_Inrush_C	Inrush_C Block signal from 87T			
14	87T_Inrush	Inrush Block signal from 87T			
15	87T_5Harm_A	5Harm_A Block signal from 87T			
16	87T_5Harm_B	5Harm_B Block signal from 87T			
17	87T_5Harm_C	5Harm_C Block signal from 87T			
18	87T_CTFail	CT failsignal from 87T			

3.2.2 Protection Principle

3.2.2.1 Phase compensation

To simplify field wiring and improve (phase current) inrush current restrained characteristics, this device requires Y shaped connection for CT at each side of transformer and the connection for CT at each side based on the same polarity. Busbar side is taken as polarity end as shown in application configuration diagram in below figure.Inside the device, phase shift is performed at Y connection side of transformer and its performance will be identical with the performance of CT with Δ shaped connection. The relay device can be applicable for all kinds of winding connection types and the phase shifting can be internally automatically performed according the clock number setting.

Schematic diagram of $Y \rightarrow \Delta$ current conversion at secondary side of CT is as below:

Figure 3.2-111 o'clock connection and 1 o'clock connection

In addition, the device also regulates the difference in transformation ratio between CTs at each side of transformer. Each side is provided with a CT transformation ratio regulation coefficient

which is multiplied by current quantity collected by the device to get the quantity after regulation of CT transformation ratio. By simply entering relevant parameters of transformer (refer to the table of settings), it's possible to automatically obtain regulation coefficient of CT at each side without the need for external connection with auxiliary CT. Such type of regulation is more reliable when compared with regulation performed using hardware circuit.

This device only performs phase shift for current at Y connection side. In case of 11 o'clock connection at \triangle side, phase shift at Y side could be performed as below:

$$\dot{I}'_{A} = (\dot{I}_{A} - \dot{I}_{B})/\sqrt{3}$$
$$\dot{I}'_{B} = (\dot{I}_{B} - \dot{I}_{C})/\sqrt{3}$$
$$\dot{I}'_{C} = (\dot{I}_{C} - \dot{I}_{A})/\sqrt{3}$$

In case of 1 o'clock connection at \triangle side, phase shift at Y side could be performed as below:

$$\begin{split} \dot{I}'_{A} &= (I_{A} - I_{C})/\sqrt{3} \\ \dot{I}'_{B} &= (I_{B} - I_{A})/\sqrt{3} \\ \dot{I}'_{C} &= (I_{C} - I_{B})/\sqrt{3} \end{split}$$

Table3.3-3 Matrixofphasecompensation

Yy0	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix} \begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Yd1	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix}$
Yy2	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix} \begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Yd3	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix}$
Yy4	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}'_{C} \end{bmatrix} \begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$

Yd5	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix}$
Yy6	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix} \begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Yd7	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix}$
Yy8	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix} \begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Yd9	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix}$
Yy10	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}'_{C} \end{bmatrix} \begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Yd11	$\begin{bmatrix} \dot{I}'_{A} \\ \dot{I}'_{B} \\ \dot{I}'_{C} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{A} \\ \dot{I}_{B} \\ \dot{I}_{C} \end{bmatrix}$
Dy1	$\begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Dy3	$\begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$

Dy5	$\begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Dy7	$\begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Dy9	$\begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$
Dy11	$\begin{bmatrix} \dot{I}'_{a} \\ \dot{I}'_{b} \\ \dot{I}'_{c} \end{bmatrix} = \frac{1}{\sqrt{3}} \cdot \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{bmatrix}$

3.2.2.2 Magnitude Compensation

> Rated primary current at each side of transformer

$$I_{1e} = \frac{S_n}{\sqrt{3}U_{1n}}$$

Where:

 S_n means maximum rated capacity of transformer nameplate, and U_{1n} represents rated primary voltage at calculated side of transformer.

The formula above applies to calculation of rated primary current of switch CT at HV, MV and LV sides; as for bushing CT at LV side, the rated primary current is given by:

$$I_{1eLT} = \frac{S_n}{\sqrt{3}\sqrt{3}U_{1n}} = \frac{S_n}{3U_{1n}}$$

CT transformation ratio at each side of transformer

$$K_{TA} = \frac{I_{1n}}{I_{2n}}$$

Where, I_{2n} rated secondary current of CT is 5A or 1A; I_{1n} "primary side of CT" is dependent on corresponding settings of system parameters.

Rated secondary current at each side of transformer

$$I_{2e} = \frac{I_{1e}}{K_{TA}}$$

CT balance coefficient at each side of differential protection

With HV side as reference, the balance coefficient at HV side is fixedly set to 1.

Balance coefficient at MV side:

$$K_{phM-ZC} = \frac{I_{2e-H}}{I_{2e-M}} = \frac{I_{1eH}/K_{TAH}}{I_{1eM}/K_{TAM}} = \frac{S_n/\sqrt{3}U_{1nH}}{S_n/\sqrt{3}U_{1nM}} \times \frac{K_{TAM}}{K_{TAH}} = \frac{U_{1nM}}{U_{1nH}} \times \frac{K_{TAM}}{K_{TAH}}$$

Balance coefficient at LV side (switch CT):

$$K_{phL-ZC} = \frac{I_{2e-H}}{I_{2e-L}} = \frac{I_{1eH}/K_{TAH}}{I_{1eL}/K_{TAL}} = \frac{S_n/\sqrt{3}U_{1nH}}{S_n/\sqrt{3}U_{1nL}} \times \frac{K_{TAL}}{K_{TAH}} = \frac{U_{1nL}}{U_{1nH}} \times \frac{K_{TAL}}{K_{TAH}}$$

In the formula, K_{TAL} means CT transformation ratio of CB at LV side, while U_1nL represents rated voltage at LV side.

3.2.2.3 Fault detector based on biased differential current

The fault detector can initiate biased differential element, and its operation equation is shownas below.

Where:

Idmax is the maximum value of three phase differential currents.

3.2.2.4 Fault detector based on instantaneous differential current

The fault detector can initiate instantaneous differential element, and its operation equation is shownas below.

Where:

Idmax is the maximum value of three phase differential currents.

3.2.2.5 Calculation of Differential and Restraint Currents

The equation of calculating differential current is:

$$\begin{cases} I_{dA} = \left| I'_{A1} + I'_{A2} + I'_{A3} + I'_{A4} + I'_{A5} + I'_{A6} \right| \\ I_{dB} = \left| I'_{B1} + I'_{B2} + I'_{B3} + I'_{B4} + I'_{B5} + I'_{B6} \right| \\ I_{dC} = \left| I'_{C1} + I'_{C2} + I'_{C3} + I'_{C4} + I'_{C5} + I'_{C6} \right| \end{cases}$$

The equation of calculating restraint current is:

$$\begin{cases} I_{rA} = \frac{1}{2} \times \left(|I'_{A1}| + |I'_{A2}| + |I'_{A3}| + |I'_{A4}| + |I'_{A5}| + |I'_{A6}| \right) \\ I_{rB} = \frac{1}{2} \times \left(|I'_{B1}| + |I'_{B2}| + |I'_{B3}| + |I'_{B4}| + |I'_{B5}| + |I'_{B6}| \right) \\ I_{rC} = \frac{1}{2} \times \left(|I'_{C1}| + |I'_{C2}| + |I'_{C3}| + |I'_{C4}| + |I'_{C5}| + |I'_{C6}| \right) \end{cases}$$

Where:

l'Am, l'Bm, l'Cm are corrected secondary current of branch m (m=1, 2, 3, 4, 5, 6).

IdA, IdB, IdC are differential currents.

IrA, IrB, IrC are restraint currents.

3.2.2.6 Biased Low Stage

The currents for following calculation are the results of the actual secondary current of each side multiplying its own correction coefficient. The biased low stage with low start setting and restraint slope is much more sensitive for a slight internal fault. The function includes four blocking elements: CT saturation, inrush current, overexcitation and CT circuit failure (optional) to prevent it from the unwanted operation during the shortcircuits outside the protected area, the large currents fed by the transformer inmotor startup or the transformer inrush situations.

$$\begin{split} &I_{d} > K_{1} \times I_{r} + I_{Str} \qquad (I_{r} < K_{nee1}) \\ &I_{d} > K_{2} \times (I_{r} - K_{nee1}) + K_{1} \times K_{nee1} + I_{Str} \qquad (K_{nee1} \le I_{r} < K_{nee2}) \\ &I_{d} > K_{3} \times (I_{r} - K_{nee2}) + K_{2} \times (K_{nee2} - K_{nee1}) + K_{1} \times K_{nee1} + I_{Str} \qquad (I_{r} \ge K_{nee2}) \end{split}$$

ī.

$$I_{d} = \left| \sum_{i=1}^{m} I_{i} \right|$$
$$I_{r} = \frac{1}{2} \sum_{i=1}^{m} |I_{i}|$$

1

Where:

 I_{d} and I_{r} are respectively the differential current and the restraint current.

 I_{Str} is the start setting of biased differential protection (i.e., 87T_Cur_Str).

"Knee1" and "Knee2" are respectively current settings of knee point 1 and knee point 2, the corresponding set value: 87T_Cur_K1 and 87T_Cur_K2).

"K1", "K2" and "K3" are three slopes of biased differential protection, the corresponding set value: 87T_Slope1, 87T_Slope2, 87T_Slope3.

Operation characteristic of sensitive biased differential element is shown below.

Figure 3.2-2 Operation characteristic of differential protection

3.2.2.7 Instantaneous High Stage

Instantaneous high stage for transformer is to accelerate the operation speed for transformer's internal fault. The operation of the instantaneous high stage is not biasedand has no blocking element. Instantaneoushigh stage shall operate to clear the fault when any phase differential current is higher than its setting. Its operation criterion is:

Idmax> 87T_Cur_Inst

Where:

Idmax is the maximum value of three phase differential currents.

3.2.2.8 Inrush Current Discrimination

The device provides optional inrush current distinguished principles: harmonic principle (second harmonic) or waveform symmetry principle. The logic setting 87T_Opt_Inrushis used to select distinguished principle.

> Inrush current discrimination based on harmonics

The ratio of second harmonic in three-phase differential current to fundamental harmonic is taken as criterion for blocking of inrush exciting current, and the operating formula is given as below:

$$I_{2nd} > K_{2xb} \bullet I_{1st}$$

Where:

I^{2nd} means second harmonic in differential current at each phase;

 I_{1st} represents fundamental harmonic of differential current at corresponding phase; K_{2xb} is second harmonic restraint coefficient.

This device incorporates our proprietary second harmonic compound logic restraint principle which has been proven through substantial operation cases. Details are described as below:

- As for transformer with Y/∆ connection, differential current reflects the difference of current phasor between two phases at Y shaped connection side. In case of charging of no-load transformer at Y shaped connection side, the relatively obvious inrushing characteristic (second harmonic content or intermission angle) in single-phase current may be weakened after currents at two phases subtract each other. If this is the case, the traditional method (that is, to realize restraint by extracting second harmonic component from differential current) may not work. Since CT at Y side of transformer is connected in the Y shape, second harmonic in the original two phase currents could be used for restraint when second harmonic of differential current fails to perform the restraint. This could significantly improve the reliability of inrush restraint.
- With respect to conventional second harmonic inrush restraint, biased differential protections at all the three phase will be blocked in case of inrush restraint if with differential current at any phase, and this is referred to as "or" logic. If restraint is performed simply as "or" logic, differential protection may operate at a relatively low rate in case of charginga faulty transformer with no load. This device conducts a complex inrush current restraint logic based on the differential currents, which is distinguished in the inrush current and fault current at three phases. If there is no fault in the transformer, "or" restraint logic is used to reliably block trippingeven large inrush current is generated. In case that a faulty transformer withoutany loadis switched on, split-phase restraint mode would be automatically activated. The split-phase restraint modeensures that percentage differential protection can still operate rapidly and sensitively when a faulty transformer without any load is switched on.

> Inrush current discrimination based on waveform symmetry principle

In case of fault, differential current basically displays power frequency sine wave, while in case of inrush exciting current, waveform would be subjected to distortion, interruption and asymmetry due to the existence of substantial harmonic components. It's possible to identify inrush exciting current by identifying such distortion using algorithms.

In case of fault, the following formulais fulfilled:

$$S_+ \le K_b * S_-$$

Where:

$$S_{+}$$
 means half-wave integral quantity of $\left| I_{i}' + I_{i+\frac{T}{2}}' \right|$

 S_{-} represents the half-wave integral quantity of

 k_b iswaveform asymmetry coefficient. I'_i represents the numerical value of differential current derivative at some certain point of first-half wave, while $I_i^{i+\frac{T}{2}}$ means the numerical value of differential current derivative at the corresponding point of second-half wave. k_b is normally set to be 0.1~0.2 and this device takes 0.2.

3.2.2.9 CT Saturation Detection

To prevent incorrect tripping of differential protection caused by CT saturation in case of external fault, CT saturation detection element of the device would judge the saturation of CT and determine whether to block relevant differential protection.

In case of internal fault:

$$\sum_{i=1}^{n} \left| D\dot{I}_{i} \right| = \left| \sum_{i=1}^{n} D\dot{I}_{i} \right|$$

Where:

"n" means the number of sides shared by transformers.

The left part of above equation is restraint current, while the right part is differential current. The equation is not fulfilled in case of either external fault or external fault under the condition of saturated CT. As a matter of fact, since CT saturation induced differential current always comes into being after a certain period of time of CT saturation, the device determines if saturation has occurred by taking advantage of the temporal consistency between restraint current and differential current. If saturation has occurred, the percentage differential restraint coefficient would be automatically driven up so as to assure the reliability of differential protection and the quick operation in case of conversion of external fault saturation into internal fault.

3.2.2.10 Overexcitation Detection

When a transformer is overexcited, the exciting current will increase sharply which may result in an unwanted operation of differential protection. Therefore the overexcitation shall be discriminated to block differential protection. The fifth harmonic of differential current can be selected to determinate overexcitation. Id_5th> 87T_K_Hm5 xId_1st

Where:

Id_1st is the fundamental component of differential current.

Id_5th is the fifth harmonic of differential current.

The fifth harmonic is recommended to be selected for overexcitation calculation.

3.2.2.11 Differential CT circuit abnormality

If the differential current in any phase is continually greater than the alarm setting 87T_Cur_Alm over 10s, the differential current abnormality alarm will be issued, but this alarm will not block differential protection.

Figure 3.2-3Differential CT Circuit Abnormality

3.2.2.12 Differential CT circuitfailure

This is a differential protection CT circuit failure criterion.

First of all, the possibility of concurrence of multi-side CT line-break and fault is not taken into consideration. Under this premise, it's possible to distinguish between CT circuit failure and fault based on the following characteristic. In case of CT circuit failure, it's necessary to specifically identify circuit failure phase.

Single-phase or two-phase CTcircuit failure:

	CT circuit failure	Fault		
Current variation	Abrupt change of current at line-break	Abrupt change of current at		
Current variation	side only	multiple sides		
Current variation	From high to low	From low to high		
tendency	From high to low	FIGHTIOW to High		
Current amplitude	\leq 0.08 <i>In</i>	$\geq In$		

In case the abrupt current variation is greater than 5~10%IN, abrupt current variation would be deemed to have occurred.

Alarm signal will be issued when CT circuit failure lasts for 10s, and in such a case, whether or not to instantaneously block relevant differential protection is determined bysetting. The condition for reset of CT circuit failure is that there's no negative-sequence current at this side. The negative-sequence current at this side is lower than threshold of CT line-break negative-sequence current (fixed value).

Blocking of biased differential protection by CT circuit failure follows the following principle:

- When "CTS_Blk_Ena" is set to "1", biased differential protection would be blocked in case of CT circuit failure (as for longitudinal percentage differential protection and split-phase percentage differential protection, differential protection would be blocked when differential current is less than 1.2le and would not when more than 1.2le; with respect to cell differential protection, differential protection would be blocked when differential current is less than 1.2lLe and would not when more than 1.2lLe. Here, le means rated secondary current at HV side of transformer, while ILe represents rated secondary current at LV side of transformer).
- When "CTS_Blk_Ena" is set to "0", biased differential protection would not be blocked in case of CT circuit failure.

Where:

"CTS_Blk_Ena" is effective for Biased low stage.

It should be noted that CT circuit failure induced blocking is principally designed to prevent malfunction of differential protection caused by CT circuit failure and follows the following principles:

Firstly, concurrence of multi-side CT circuit failureis not taken into account; secondly, differential protection trip is allowed in case of concurrence of failure and CT circuit failure; thirdly, relevant protection should be blocked when fault occurs after CT circuit failure; fourthly, protection shall operate if CT circuit failure occurs after the occurrence of fault.

3.2.3 Logic Diagram

Figure 3.2-4 Logic diagram of 87T_Inst protection

Figure 3.2-5 Logic diagram of 87T protection

Where:

Idmax is the maximum value of three phase differential currents.

"87T_CT_Satu" means that the flag of CT Saturation.

"87T_Inrush" means that the flag of Inrush current

"87T_CTFail" means that the flag of CT circuit failure.

3.2.4 Settings

Table 3.2-3 Settings of Transformer differential protection

No.	Name	Range	Unit	Step	Default	Description
1	97T Cur Str	0.05.20.00	IE	0.01	0.40	Pickup setting of biased
I	o/T_Cul_Su	0.05~20.00	IE	0.01	0.40	differential element
2	97T Cur Inot	0.05.20.00	IE	0.01	6.00	Current setting of instantaneous
2	o/T_Cut_Inst	0.05~20.00		0.01	0.00	differential element
2	97T Cur Alm	0.05.20.00	IE	0.01	1.00	Current setting of differential
3	o/T_Cul_Alm	0.05~20.00		0.01	1.00	circuit abnormality alarm
4	97T K Hm2	0.05.0.50		0.01	0.15	Coefficient of second harmonics
4	07 I_K_⊓III2	0.05~0.50	-	0.01	0.15	for inrush current detection
F	97T K Hm5			0.01	0.25	Coefficient offive harmonics for
5	CIIII _ A_ I 10	0.05~0.50	-	0.01	0.55	inrush current detection
6	97T Cur K1	0.05.20.00	IE	0.01	1.00	Current setting of knee point 1 for
0		0.05~20.00	IE	0.01	1.00	transformer differential protection
7		0.05.20.00	IE	0.01	6.00	Current setting of knee point 2 for
1	o/T_CuI_K2	0.05~20.00	IC	0.01	0.00	transformer differential protection
8	87T _Slope1	0~0.90	-	0.01	0.00	Slope 1 of biased differential

No.	Name	Range	Unit	Step	Default	Description
						element
_	OZT Class?	0.0.00		0.01	0.50	Slope 2 of biased differential
9	871_Slopez	0~0.90	-	0.01	0.50	element
10	07T Clana2	0.0.00		0.01	0.75	Slope 3 of biased differential
10	071_Slopes	0~0.90	-	0.01	0.75	element
						Option of inrush current
						discrimination principle:
11	87T Opt Iprush	0-3	_	1	0	0: waveform symmetry
	or i_opt_inition	0~3		1	0	1: Harmonic principle
						2: Comprehensive principle
						3:Without Inrush CurrentBlock
						Logic setting of
						enabling/disabling conventional
12	87T _Ena	0,1	-	1	0	biased differential element
						0: disable
						1: enable
	87T_Inst_Ena	87T_Inst_Ena 0,1	-	1	0	Logic setting of
						enabling/disabling instantaneous
13						differential element
						0: disable
						1: enable
	87T_Alm_Ena		-	1	0	Logic setting of
						enabling/disabling differential
14		87T_Alm_Ena 0,1				Alam element
						1: enable
						Logic setting of
						enabling/disabling block
15	87T_Hm5_Ena	0,1	-	1	0	overexcitation
						0: disable
						1: enable
						Logic setting of
						enabling/disabling block biased
16	87T_CTS_Blk_Ena	87T_CTS_Blk_Ena 0,1		1	0	differential element during CT
					0	circuit failure
					0: disable	
						1: enable

3.3 Distance Protection 21

3.3.1 Overview

The main function of Distance protection (21) is to provide very sensitive and accurate operation of

protection where overcurrent protection and earth fault protection cannot meet the required high standard of protection. Such kind of protection operates based on the ratio of voltage and current is known as impedance or distance protection. The ratio of current and voltage directly measured by current transformer (CT) and voltage transformer (PT or VT) respectively.

Distance protection (21) relay device provide forward or reverse five settable zone.

Every zone of distance protection is providing dependable settings and full design scheme of measurement phase to phase (line value) and phase to earth (phase value). The characteristics of distance protection zone are:

- Mho characteristics
 - Phase to phase (line value) distance element
 - Phase to earth (phase value) distance element
- Quadrilateral characteristics
 - Phase to phase (line value) distance protection
 - Phase to earth (phase value) distance protection
 - Reactance line element
 - Direction line element
 - Resistance line element
- Power swing blocking releasing (PSBR)
 - o Each zone can be easily configuring PSBR setting

When VT circuit fails, VT circuit supervision logic will output a blocking signal to block all distanceprotection.

Distance protection can select line VT or bus VT for protection algorithm by a settingVTS_LineVT.

3.3.2 Parameters

Table 3.3-1 Parameters	Table	3.3-1	Parameters
------------------------	-------	-------	------------

No.	Name	Range	Unit	Step	Default	Description
						Positive-sequence
	74	(0.05,655)/lp	ohm	0.01	10	impedance of the
1	21	(0.05~655)/IN				wholeline (secondary
						value)
0	74.0.5	10.00		0.04	05	Positive-sequence
2	ZIAng	10~89	aeg	0.01	85	impedance angle
3	ZO	(0.05~655)/ln	ohm	0.01	30	Zero-sequence impedance of the wholeline (secondary value)
4	Z0Ang	30~89	deg	0.01	80	Zero-sequence

No.	Name	Range	Unit	Step	Default	Description
						impedance angle
5	Kz	0~10.000		0.001	0.67	Zero-sequence compensation coefficient magnitude
6	KzAng	0~360.00	deg	0.01	0	Zero-sequence compensation coefficient angle

3.3.3 Fault Detector FD

3.3.3.1 Function Block

3.3.3.2 Signals

Table 3.3-2 FD Input Signals

NO.	Signal	Description
1	la,lb,lc	Three-phase current input
2	Ua,Ub,Uc	Three-phase voltage input
3	start	Other protection start signal

Table 3.3-3 FD Output Signals

NO.	Signal	Description
1	FD_Pkp	The device picks up
2	FD_SupCur_Pkp	Superimposed current fault detector element operates
3	FD_ResCur_Pkp	Residual current fault detector element operates
4	FD_NegCur_Pkp	Negative-sequence current fault detector element operates

3.3.3.3 Fault Detector Based on Superimposed Current

Superimposed phase current is obtained by subtracting the phase current from that of acycle before.

 $\Delta I = I(k) - I(k - N)$

I(k) is the sampling value at a point.

I(k-N) is the value of a sampling point before a cycle.

Operation criteria:

 $\Delta I_{\phi} = 1.25 \Delta I_{Th} + \Delta I_{Set}$

Where:

 ΔI_{ϕ} : Superimposed phase current (Φ =A, B, C)

 ΔI_{Set} : The fixed threshold value (i.e. the setting FD_SupCur_Str)

 $\Delta I_{\rm Th}$: The floating threshold value

This element adopts adaptive floating threshold varied with the change of load current continuously. The change of load current is small and steadily under normal or power swingcondition, the adaptive floating threshold with the ΔI_{Set} is higher than the change of current under these conditions and hence maintains the element stability.

The coefficient, 1.25, is an empirical value which ensures the threshold always higher than the unbalance output value of the system.

If operation condition is met, the fault detector based on superimposed current will operate to provide DCpower supply for output relays, the pickup signal will maintain 7s after the fault detector based onsuperimposed current drops off.

3.3.3.4 Fault Detector Based on Residual Current

In case of long distance fault or big resistance fault, superimposed current isrelative small, so, residual current is used to judge pickup condition.

The operation condition will be met when 3I0 is greater than the setting FD_ResCur_Str. Thefault detector based on residual current is always in service.

Where:

310: residual current calculates from the vector sum of Ia, Ib and Ic

If operation condition is met, the fault detector based on residual current will operate to provide DCpower supply for output relay, and the pickup signal will maintain 7s after the fault detector basedon residual current drops off.

3.3.3.5 Fault Detector Based on Negative-sequence Current

The operation condition will be met when I2 is greater than the setting FD_NegCur_Str. It can be enabled or disabled by the logic setting FD_Neg_Ena.

Where:

I2: negative-sequence current calculates from the vector of Ia, Ib and Ic

If operation condition is met, the fault detector based on negative-sequence current will operate to provide DCpower supply for output relay, and the pickup signal will maintain 7s after the fault detector basedon negative-sequence current drops off.

3.3.3.6 Logic

3.3.3.7 Settings

No.	Name	Range	Unit	Step	Default	Description
1	FD_Neg_Ena	0 or 1	-	-	0	Enabling/disabling negative-sequencecurrent fault detector element 0: disable 1: enable
2	FD_SupCur_Str	(0.04~0.5) ×In	A	0.01	0.5	Current setting of superimposed current fault detector element
3	FD_ResCur_Str	(0.04~30.00) ×In	A	0.01	0.5	Current setting of residual current fault detector element
4	FD_NegCur_Str	(0.04~30.00) ×In	А	0.01	0.5	Current setting of negative-sequence current fault detector element

Table 3.3-4 Settings of fault detector

3.3.4 Mho Distance Protection 21M

3.3.4.1 Function Block

3.3.4.2 Signals

Table 3.3-5 21M Input Signals

NO.	Signal	Description			
1	la,lb,lc	Three-phase current input			
2	Ua,Ub,Uc	Three-phase voltage input			
3	21Mx_PE_Blk	Block signal of phase-to-earth 21M zone x (x=1,2,3,4,5)			
4	21Mx_PP_Blk	Block signal of phase-to-phase 21M zone x (x=1,2,3,4,5)			
5	21Mx_PSBR_Blk	Blocking power swing blocking releasing of 21M zone x (x=1,2,3,4,5)			

Table 3.3-6 21M Output Signals

NO.	Signal	Description
1	21Mx_Op	Operation signal from zone x (x=1,2,3,4,5)
2	21Mx_Op_A	Operation signal from phase A zone x (x=1,2,3,4,5)
3	21Mx_Op_B	Operation signal from phase B zone x (x=1,2,3,4,5)
4	21Mx_Op_C	Operation signal from phase C zone x (x=1,2,3,4,5)
5	21Mx_PE_Op	Operation signal from phase-to-earth zone x (x=1,2,3,4,5)
6	21Mx_PP_Op	Operation signal from phase-to-phase zone x (x=1,2,3,4,5)

3.3.4.3 Protection Principle

1. Phase-to-phase distance element

Phase-to-phase positive sequence voltage is used as polarized signal for phase-to-phasedistance protection.

 $\label{eq:operation} \text{Operation voltage:} \dot{U}_{op\; \varphi\; \varphi} = \dot{U}_{\;\varphi\; \varphi} \cdot \dot{I}_{\;\varphi\; \varphi} \times Z_{ZD} \; \varphi \; \varphi \; = \text{AB, BC, CA}$

Polarized voltage: $\dot{U}_{p \ \varphi \ \varphi} = \dot{U}_{1 \ \varphi \ \varphi} \angle \theta$

Where:

 Z_{ZD} : the impedance setting zone x of phase-to-phase distance protection, set by the setting21Mx_PP_Imp_Op(x=1, 2, 3, 4, 5)

 $U_{\,\varphi\,\,\varphi}$ is the phase-to-phase voltage

 $U_{1\,\varphi\,\,\varphi}$ is the positive sequence voltage

I $_{\varphi \ \varphi}$ is the phase-to-phase current

Phase comparison equation is:

$$270^{\circ} > \arg \frac{\dot{U}_{p \, \varphi \, \varphi}}{\dot{U}_{op \, \varphi \, \varphi}} > 90^{\circ}$$

In short line, phase shift θ could be applied to the polarized voltage to improve the performance against high resistance fault. The device provides an angle-shift setting, 21Mx_PP_Phi_Shift, to set value of θ among 0°, 15° and 30°

For the three-phase close up short-circuit fault, the positive sequence voltage is lower, and the memorized positive sequence voltage is used. When the memory fades out, the operation characteristic will be reverse offset a little to enclose the origin to ensure keeping operating of distance protection until the fault being cleared. The phase comparison equation is:

 $270^{\circ} > \arg \frac{\dot{U}_{\phi \phi} + 0.1 \times \dot{I}_{\phi \phi} \times Z_{ZD}}{\dot{U}_{\phi \phi} - \dot{I}_{\phi \phi} \times Z_{ZD}} > 90^{\circ}$

Figure 3.3.2 Phase-to-phase operation characteristic of mho distance protection

2. Phase-to- earth distance element

Operation criteria:

$$270^{\circ} > \arg \frac{\dot{U}_{1 \phi} \angle \theta}{\dot{U}_{\phi} - (\dot{I}_{\phi} + k \times 3\dot{I}0) \times Z_{ZD}} > 90^{\circ} \ \varphi = A, B, C$$

Where:

 Z_{ZD} : the impedance setting zone x of phase-to-ground distance protection, set by the setting21Mx_PE_Imp_Op(x=1, 2, 3, 4, 5)

 $U_{\,_{\Phi}}$ is the phase voltage

 I_{ϕ} is the phase current

 $U_{1 \phi}$ is the positive sequence voltage

- 310 is the zero-sequencecurrent
- k is zero-sequence compensation coefficient

In short line, phase shift θ could be applied to the polarized voltage to improve the performanceagainst high resistance fault. The device provides an angle-shift setting, 21Mx_PE_Phi_Shift, toset value of θ among 0°, 15° and 30°

To improve the operation characteristics of phase-to-ground distance elementso as to allow them to cover ground fault with high resistance. without overreach, the device adopts zero sequence reactance relays to further solve the problem of overreach operation of phase-to-ground distance

element. The operation criterion of zero sequence reactance relays is:

$$360^{\circ} > \arg \frac{\dot{U}_{\phi} - \left(\dot{I}_{\phi} + k \times 3\dot{I}0\right) \times Z_{ZD}}{\left(\dot{I}_{\phi} + k \times 3\dot{I}0\right) \angle -\beta} > 180^{\circ}$$

Where:

 β : the angle of zero sequence compensation reactance, set by 21Mx_X0Comp_Ang.

The operation characteristics of above equation on impedance planes are a straight line at the set impedance vector end, shown as figure3.3.3. In the operation criterion of zero sequence reactance relays, 10 phase moves backward for β degree to appropriately limit its operation area to improve safety.

Figure 3.3.3Phase-to-ground operation characteristic of mho distance protection

3.3.4.4 Logic

Figure 3.3.2 Logic diagram of distance protection (Mho zone x)

Where:

x=1,2,3,4,5

21Mx_PE_relay means that measured impedance by zone x of phase-to-earth distanceprotection is within the range determined by the setting 21Mx_PE_Imp_Op.

21Mx_PP_relay means that measured impedance by zone x of phase-to-phase distance protectionis within the range determined by the setting 21Mx_PP_Imp_Op.

3.3.4.5 Settings

Table 3.3-7 21M Settings

NO	Name	Range	Unit	Step	Default	Description
1	21Mx_Dir_Mod	0 or 1	-	-	0	Direction option for zone x of distance protection (x=1,2, 3, 4, 5)

NO	Name	Range	Unit	Step	Default	Description
						0: Forward
						1: Reverse
						Enabling/disabling zone x of
						phase-to-earth distance protection (x=1,
2	21Mx_PE_Ena	0 or 1	-	-	0	2, 3, 4, 5)
						0: disable
						1: enable
						Enabling/disabling zone x of
						phase-to-phase distance protection (x=1,
3	21Mx_PP_Ena	0 or 1	-	-	0	2, 3, 4, 5)
						0: disable
						1: enable
						Enabling/disabling zone x of distance
						protection controlled by PSBR (x=1, 2, 3,
4	21Mx_PSBR_Ena	0 or 1	-	-	0	4, 5)
						0: disable
						1: enable
5	21My DE Dhi Shift	0 15 or 30	deg	15	0	Phase shift of phase-to-earth distance
5		0, 13 01 30	uey	15	0	protection for zone x (x=1, 2, 3, 4, 5)
6	21Mx X0Comp And	0~30	dea	0.01	12	Zero sequence reactance compensation
0		0~30	ueg	0.01	12	angle
						Impedance setting of zone x of
7	21Mx_PE_Imp_Op	(0.05~500)/ln	ohm	0.01	8	phase-to-earth distance protection (x=1,
						2, 3, 4, 5)
8	21Mx PF Op T	0.000~10.000	s	0.001	10	Time delay of zone x of phase-to-earth
Ŭ		0.000 10.000	<u> </u>	0.001	10	distance protection (x=1, 2, 3, 4, 5)
9	21Mx PP Phi Shift	0. 15 or 30	dea	15	0	Phase shift of phase-to-phase distance
-		-,				protection for zone x (x=1, 2, 3, 4, 5)
						Impedance setting of zone x of
10	21Mx_PP_Imp_Op	(0.05~500)/ln	ohm	0.01	8	phase-to-phase distance protection (x=1,
						2, 3, 4, 5)
11	21Mx_PP_Op_T	0.000~10.000	s	0.001	10	Time delay of zone x of phase-to-phase
	r		-		-	distance protection (x=1, 2, 3, 4, 5)

3.3.5 Quadrilateral Distance Protection 21Q

3.3.5.1 Function Block

3.3.5.2 Signals

Table 3.3-8 21Q Input Signals

NO.	Signal	Description			
1	la,lb,lc	Three-phase current input			
2	Ua,Ub,Uc	Three-phase voltage input			
3	21Qx_PE_Blk	Block signal of phase-to-earth 21Q zone x (x=1,2,3,4,5)			
4	21Qx_PP_Blk	Block signal of phase-to-phase 21Q zone x (x=1,2,3,4,5)			
5	21Qx_PSBR_Blk	Blocking power swing blocking releasing of 21Q zone x (x=1,2,3,4,5)			

Table 3.3-9 1Q Output Signals

NO.	Signal	Description
1	21Qx_Op	Operation signal from zone x (x=1,2,3,4,5)
2	21Qx_Op_A	Operation signal from phase A zone x (x=1,2,3,4,5)
3	21Qx_Op_B	Operation signal from phase B zone x (x=1,2,3,4,5)
4	21Qx_Op_C	Operation signal from phase C zone x (x=1,2,3,4,5)
5	21Qx_PE_Op	Operation signal from phase-to-earth zone x (x=1,2,3,4,5)
6	21Qx_PP_Op	Operation signal from phase-to-phase zone x (x=1,2,3,4,5)

3.3.5.3 Protection Principle

Features available with quadrilateral distance protection include 5 settable forward or reverse zones phase-to-ground or phase-to-phase distance element. Each zone can respectively enable or disable power swing blocking releasing.

1) The reactance lineelement

Operation criteria:

phase-to-ground:

$$180^{\circ} < \arg \frac{\dot{U}_{\phi} - (\dot{I}_{\phi} + k \times 3i0) \times Z_{ZD}}{(\dot{I}_{\phi} + k \times 3i0) \angle -\delta} < 360^{\circ} \Phi = A, B, C$$

phase-to-phase:

$$180^{\circ} < \arg \frac{\dot{U}_{\phi \phi} - \dot{I}_{\phi \phi} \times Z_{ZD}}{\dot{I}_{\phi \phi} \angle - \delta} < 360^{\circ} \phi \phi = AB, BC, CA$$

Where:

 Z_{ZD} : the impedance setting zone x of quadrilateral distance protection, set by the setting21Qx_PE_Imp_Op OR 21Qx_PP_Imp_Op(x=1, 2, 3, 4, 5)

 $U_{\phi \phi}$ is the phase-to-phase voltage

I $_{\varphi \ \varphi}$ is the phase-to-phase current

 $U_{\,_{\Phi}}\,$ is the phase voltage

I $_{\phi}$ is the phase current

310 is the zero-sequencecurrent

k is zero-sequence compensation coefficient

 δ : the angle of zero sequence compensation reactance, set by 21Qx_X0Comp_Ang.

2) The directional lineelement

Operation criteria:

phase-to-ground:

$$-\alpha < \arg \frac{\dot{U}_{p \phi}}{\dot{I}_{\phi}} < 90^{\circ} + \beta$$

phase-to-phase:

$$-\alpha < \arg \frac{\dot{U}_{p \, \phi \, \phi}}{\dot{I}_{\phi \, \phi}} < 90^{\circ} + \beta$$

Where:

 $\dot{U}_{n\, \varphi \, \varphi}\,$ is the phase-to-phase polarized voltage

 $\dot{U}_{p\,\varphi}~$ is the phase polarized voltage

- α : the angle of directional line, set by the setting 21Qx_Ang_Alpha(x=1, 2, 3, 4, 5)
- β : the angle of directional line, set by the setting 21Qx_Ang_Beta(x=1, 2, 3, 4, 5)

3) The resistance lineelement

Operation criteria:

phase-to-ground:

$$\phi < \arg \frac{\dot{U}_{\phi} - \left(\dot{I}_{\phi} + k \times 3\dot{I}0\right) \times R_{ZD}}{\left(\dot{I}_{\phi} + k \times 3\dot{I}0\right)} < 180^{\circ} + \phi$$

phase-to- phase:

$$\phi < arg \frac{\dot{U}_{_{\varphi \ \varphi}} - \dot{I}_{_{\varphi \ \varphi}} \times R_{ZD}}{\dot{I}_{_{\varphi \ \varphi}}} < 180^{\circ} + \phi$$

Where:

 R_{ZD} : the resistance setting zone x of quadrilateral distance protection, set by the setting21Qx_PE_R_Op OR 21Qx_PP_R_Op(x=1, 2, 3, 4, 5)

 ϕ : line positive-sequence characteristic angle

Figure 3.3.5 Impedance characteristic of quadrilateral distance protection

In the figure 3.3-5,the X elementcompletes the fault location,adopt the reactance lineelement, characteristic is like X line, downward offset angle of the R axis; the D elementcompletes the direction judgment,adopt the directional lineelement, characteristic is like D broken line; the R elementreflect high-impedance-grounded faults,adopt the resistance lineelement, characteristic is like R line.

3.3.5.4 Logic

Figure 3.3.6 Logic diagram of distance protection (Quad zone x)

Where:

x=1,2,3,4,5

21Qx_PE_relay means that measured impedance by zone x of phase-to-earth distanceprotection is within the range determined by the setting 21Qx_PE_Imp_Op and 21Qx_PE_R_Op.

21Qx_PP_relay means that measured impedance by zone x of phase-to-phase distance protectionis within the range determined by the setting 21Qx_PP_Imp_Op and 21Qx_PP_R_Op.

3.3.5.5 Settings

Table	3.3-10	21Q	Settings
-------	--------	-----	----------

NO	Name	Range	Unit	Step	Default	Description
1	21Qx_Dir_Mod	0 or 1	-	-	0	Direction option for zone x of distance protection (x=1,2, 3, 4, 5) 0: Forward 1: Reverse
2	21Qx_PE_Ena	0 or 1	-	-	0	Enabling/disabling zone x of phase-to-earth distance protection (x=1, 2, 3, 4, 5) 0: disable 1: enable
3	21Qx_PP_Ena	0 or 1	-	-	0	Enabling/disabling zone x of phase-to-phase distance protection (x=1, 2, 3, 4, 5) 0: disable 1: enable
4	21Qx_PSBR_Ena	0 or 1	-	-	0	Enabling/disabling zone x of distance protection controlled by PSBR (x=1, 2, 3, 4, 5) 0: disable 1: enable
5	21Qx_Ang_Alpha	5~45	deg	0.01	25	Angle of blinder in fourth quadrant forforward direction
6	21Qx_Ang_Beta	0~85	deg	0.01	30	Angle of blinder in second quadrant forforward direction
7	21Qx_X0Comp_Ang	0~30	deg	0.01	12	Zero sequence reactance compensation angle
8	21Qx_PE_Imp_Op	(0.05~500)/ln	ohm	0.01	8	Impedance setting of zone x of phase-to-earth distance protection (x=1, 2, 3, 4, 5)
9	21Qx_PE_R_Op	(0.05~500)/ln	ohm	0.01	20	Resistance setting of zone x of phase-to-earth distance protection (x=1, 2, 3, 4, 5)
10	21Qx_PE_Op_T	0.000~10.000	s	0.001	10	Time delay of zone x of phase-to-earth distance protection (x=1, 2, 3, 4, 5)
11	21Qx_PP_Imp_Op	(0.05~500)/ln	ohm	0.01	8	Impedance setting of zone x of phase-to-phase distance protection (x=1, 2, 3, 4, 5)
12	21Qx_PP_R_Op	(0.05~500)/ln	ohm	0.01	20	Resistance setting of zone x of

NO	Name	Range	Unit	Step	Default	Description
						phase-to-phase distance protection (x=1,
						2, 3, 4, 5)
13	21Qx_PP_Op_T	0.000~10.000	s	0.001	10	Time delay of zone x of phase-to-phase distance protection (x=1, 2, 3, 4, 5)

3.3.6 Power Swing Blocking Releasing PSBR

3.3.6.1 Function Block

3.3.6.2 Signals

Table 3.3-11 PSBR Input Signals

NO.	Signal	Description
1	la,lb,lc	Three-phase current input
2	Ua,Ub,Uc	Three-phase voltage input

Table 3.3-12 PSBR Output Signals

NO.	Signal	Description
1	PSBR_RIs	PSBR operates to release distance protection

3.3.6.3 Protection Principle

When power swing occurs on the power system, the impedance measured by the distance measuring element may vary from the load impedance area into the operating zone of the distance element. The distance measuring element may operate due to the power swing occurs in many points of interconnected power systems. To keep the stability of whole power system, tripping due to operation of the distance measuring element during a power swing is generally not allowed. Our distance protection adopts power swing blocking releasing to avoid maloperation resulting from power swing. In another word, distance protection is blocked all along under the normal condition and power swing when the respective logic settings are enabled. Only when fault (internal fault or power swing with internal fault) is detected, power swing blocking for distance protection is released by PSBR element.

Power swing blocking for distance element will be released if any of the following PSBR elements operates. Each distance zone elements has respective setting for selection this function.

- 1) Swing detector element (SD)
- 2) Unsymmetrical fault PSBR element (UF PSBR)

3) Symmetrical fault PSBR element (SF PSBR)

1. Swing detector element

If the device picked up before swing condition is met, PSBR will operate for 160ms.

This detection is based on measuring the voltage at power swing center, during power swing, swing condition is shown as below:

$$\begin{cases} -0.7U_{N} < U_{\partial S} < 0.7U_{N} \\ \Delta U_{\partial S} > 1V \\ U_{1} > 18V \& U_{2} < 3V \& 3U_{0} < 8V \\ 3I_{0} < I _ Line \& I_{1} > PSBR. I \end{cases}$$

If operation condition is met, the swing detector will operate.

2. Unsymmetrical fault PSBR element

The operation criterion:

10+12>m×11

The "m", an empirical value, is internal fixed coefficient which can ensure operation during power swing with internal unsymmetrical fault, while no operation during power swing.

3. Symmetrical fault PSBR element

This detection is based on measuring the voltage at power swing center, during power swing, $U1cos\Phi$ will constantly change periodically.

Where:

 Φ : the angle between positive sequence voltage and current

U1: the positive sequence voltage

1) Releasing element 1

During power swing, power swing center voltage U1cos Φ has the following characteristics: When electric potential phase angle difference between power supplies at two sides is 180o, U1cos Φ =0 and change rate dU1cos Φ /dt is the maximum. When this phase angle difference is near 0, power swing center voltage change rate dU1cos Φ /dt is the minimum. During short circuit, U1cos Φ remains unchanged and dU1cos Φ /dt=0.

2) Releasing element 2

For these reasons, the method to release distance protection on condition that power swing center voltage $U1cos\Phi$ is less than a setting and after a short delay can be used as symmetric fault discriminating element. This element can accurately differentiate power swing and 3-phase short circuit fault, and constitute a complete power swing blocking scheme with other elements. The

element to open distance protection if $U1\cos\Phi$ is less than a certain setting and after a delay is easy to realize and has short delay, and can trip fault more quickly and accurately trip 3-phase short circuit fault during power swing.

- > when -0.03UN<UOS<0.08UN, the SF PSBR element will operate after 150ms.
- ▶ when -0.1UN<UOS<0.25UN, the SF PSBR element will operate after 500ms.

3) Releasing element 3

To reduce the time delay for SF PSBR element during power swing, the change rate of voltage at power swing center is also used which can release SF PSBR element quickly for the fault occurred during power swing. The typical release time is less than 60ms.

3.3.6.4 Logic

Figure 3.3.7 Logic diagram of PSBR

3.3.6.5 Settings

Table 3.3-1 Settings of PSBR

No.	Name	Range	Unit	Step	Default	Description
1	PSBR_Cur	(0.05~30.00) ×ln	A	0.01	20	Current setting for power swing blocking

3.4 Directional Overcurrent Protection (67P/50/51)

3.4.1 Overview

The main and important function of Four stage phase overcurrent protection OC4_PTOC (67P) is to continuously track the electrical power system current. For the point of view of continuously power supply and minimum damage during fault condition (at the time of fault the normal current value is increases suddenly and this current is too harmful for primary equipment's). If the detected or measured current value is greater than the set level, the Four stage phase overcurrent protection OC4_PTOC (67P) will operates or gives alarm signal with dependable four stage definite time delay (DT) or inverse definite minimum time (IDMT) delay characteristics and each stage have same logic of operation settings.

Notice!

3.4

In case of both side feed transmission lines or ring power system the Phase overcurrent protection ensure the more sensitive and precise operation with directional element. Direction element define the operating angle (direction) range.

In addition, the 67P can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.4.1.1 Function Block

3.4.1.2 Signals

Table 3.4-167P Input Signals

NO.	Signal	Description
1	la, lb, lc	the three phase current.
2	Ua, Ub, Uc	the three phase voltage
3	67P1_Blk	Block signal of 67P stage1
4	67P2_Blk	Block signal of 67P stage2
5	67P3_Blk	Block signal of 67P stage3
6	67P4_Blk	Block signal of 67P stage4

Table 3.4-2 67POutput Signals

NO.	Signal	Description
1	67P1_Str_A	Start signal from phase A from 67Pstage1
2	67P1_Str_B	Start signal from phase B from stage1
3	67P1_Str_C	Start signal from phase C from stage1
4	67P1_Str	Common start signal from stage1
5	67P1_Op_A	Trip signal from stage1 phase A
6	67P1_Op_B	Trip signal from stage1 phase B
7	67P1_Op_C	Trip signal from stage1phase C
8	67P1_Op	Trip signal from stage1
9	67P1_OPENVol	Voltage open signal from stage1
10	67P1_OPENDir_A	Directional open signal of phase A from stage1
11	67P1_OPENDir_B	Directional open signal of phase B from stage1
12	67P1_OPENDir_C	Directional open signal of phase C from stage1
13	67P2_Str_A	Start signal from stage2 phase A
14	67P2_Str_B	Start signal from stage2 phase B
15	67P2_Str_C	Start signal from stage2 phase C
16	67P2_Str	Common start signal from stage2
17	67P2_Op_A	Trip signal from stage2 phase A
18	67P2_Op_B	Trip signal from stage2 phase B
19	67P2_Op_C	Trip signal from stage2phase C
20	67P2_Op	Trip signal from stage2
21	67P2_OPENVol	Voltage open signal from stage2
22	67P2_OPENDir_A	Directional open signal of phase A from stage2
23	67P2_OPENDir_B	Directional open signal of phase B from stage2
24	67P2_OPENDir_C	Directional open signal of phase C from stage2
25	67P3_Str_A	Start signal from stage3 phase A
26	67P3_Str_B	Start signal from stage3 phase B
27	67P3_Str_C	Start signal from stage3 phase C
28	67P3_Str	Common start signal from stage3
NO.	Signal	Description
-----	----------------	--
29	67P3_0p_A	Trip signal from stage3 phase A
30	67P3_Op_B	Trip signal from stage3 phase B
31	67P3_Op_C	Trip signal from stage3phase C
32	67P3_Op	Trip signal from stage3
33	67P3_OPENVol	Voltage open signal from stage3
34	67P3_OPENDir_A	Directional open signal of phase A from stage3
35	67P3_OPENDir_B	Directional open signal of phase B from stage3
36	67P3_OPENDir_C	Directional open signal of phase C from stage3
37	67P4_Str_A	Start signal from stage4 phase A
38	67P4_Str_B	Start signal from stage4 phase B
39	67P4_Str_C	Start signal from stage4 phase C
40	67P4_Str	Common start signal from stage4
41	67P4_0p_A	Trip signal from stage4 phase A
42	67P4_Op_B	Trip signal from stage4 phase B
43	67P4_Op_C	Trip signal from stage4phase C
44	67P4_Op	Trip signal from stage4
45	67P4_OPENVol	Voltage open signal from stage4
46	67P4_OPENDir_A	Directional open signal of phase A from stage4
47	67P4_OPENDir_B	Directional open signal of phase B from stage4
48	67P4_OPENDir_C	Directional open signal of phase C from stage4

3.4.2 Protection Principle

Phase overcurrent protection has following functions:

- 1) Four-stage phase overcurrent protection with independent logic, current and time delay settings.
- 2) Four-stage can be selected as definite-time or inverse-time characteristic. The inverse-time characteristic is selectable among IEC standard inverse-time characteristics.
- 3) Direction control element can be selected to control each stage phase overcurrent protectionwith three options: no direction, forward direction and reverse direction

3.4.2.1 Phase Overcurrent Element

The operation criterion for each stage of overcurrent element is:

$$I_{\phi} > 67Px_Cur_Str$$

Where:

 I_{ϕ} is measured phase current.

67Px_Cur_Stris the current setting of stage x (x=1, 2, 3, or 4) of overcurrent element.

The measured current values are compared to the setoperation current value of the function

 $(67Px_Cur_Str)$. If the measured value exceeds the set $67Px_Cur_Str$, the level detector reports the exceeding of the value to the phase selection logic.

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase information matches the $67Px_Str_Ph_Num$ setting, the phase selection logic activates the output signal of $67Px_OP_n(n=A,B,C)$.

3.4.2.2 Direction Control Element

The directional operation can be selected with the $67Px_Dir_Mod$ setting. The user can select either "(Non-Dir)", "(Forward)" or "(Reverse)" operation. By setting the value of $67Px_Dir_Mod$ to "0", the non-directional operation is allowed when the directional information is invalid.

The $67Px_ANG_RCA$ setting is used to turn the directional characteristic. The value of $67Px_ANG_RCA$ should be chosen in such a way that all the faults in the operating direction are seen in the operating zone and all the faults in the opposite direction are seen in the non-operating zone. The value of Characteristic angle depends on the network configuration

The cross-polarizing quantity is used to determine the fault direction($Ia \rightarrow Ubc/Ib \rightarrow Uca/Ic \rightarrow Uab$). The evaluation of the forward directionality is according to the equation:

$$-90^{\circ}(+5^{\circ}) < \arg \frac{\dot{I}_{r}e^{j(RCA-90^{\circ})}}{\dot{U}_{r}} < 90^{\circ}(-5^{\circ})$$

The evaluation of the backward directionality is according to the equation:

$$90^{\circ}(+5^{\circ}) < \arg \frac{\dot{I}_{r} e^{j(RCA - 90^{\circ})}}{\dot{U}_{r}} < 270^{\circ}(-5^{\circ})$$

 $\pm 5^{\circ}$ is the max angle margin. I_r and U_r are the polarizing current and voltage. RCA is the Relay characteristic angle.

The polarized voltage is available as long as the phase-phase voltage exceeds 12V.Ifthephase-phase voltage reduces to less than 12V, the device uses memory voltage as polarized voltage.

If the polarized voltage is invalid, the direction elementendures until the phase current decreases below the I_LINE(0.05In).

Direction	Current	Polarized Voltage
Phase A	la	Ubc
Phase B	lb	Uca
Phase C	lc	Uab
Phase A - B	la - Ib	Ubc - Uca
Phase B - C	lb - Ic	Uca - Uab
Phase C - A	lc - la	Uab - Ubc

Table 3.4-3 Direction description

3.4.2.3 Second harmonic detecting element

For harmonic detecting element, the harmonic blocking mode can be selected through the setting 67Px_Hm2_Mod, it can support phase blocking, cross blocking, and maximum phase blocking. The corresponding relationship is shown in the following table.

Н	armonic blocking mode	Harmonic blocking criterion					
		Phase A	Phase B	Phase C			
1	Phase blocking	la2nd /la1st>	lb2nd /lb1st>	lc2nd /lc1st>			
2	Cross blocking	(la2nd /la1st >) or (lb2nd/lb1st >) or (lc2nd /lc1st>)					
3	Maximum phase blocking	Max(la2nd,lb2nd, lc2nd)/la1st>	Max(la2nd ,lb2nd, lc2nd)/lb1st>	Max(la2nd ,lb2nd, lc2nd)/lc1st>			

When the fundamental current is greater than the setting 67P_Hm2_IRIs, the correspondingphase will be unblocked by harmonic control element. The logic of harmonic control element is shown in Figure 3.4-1.

Figure 3.4-1 Logic Diagram for harmonic detecting element

Where:

la1st, lb1st, lc1st are the fundamental current.la2nd, lb2nd, lc2nd are the secondary harmonic current.Imax is the maximum phase current.

3.4.2.4 Characteristic Curve

All stages can be selected as definite-time or inverse-time characteristic.Inverse-time operating characteristic is as follows.

$$t = \left(\frac{k}{\left(I/I_p\right)^{\alpha} - 1} + C\right) \times T_p$$

Where:

 I_p is current setting $67Px_Cur_Str$.

 T_p is time multiplier setting $67Px_T_Mult$.

 α is a constant setting $67Px_Alpha$.

kis a constant setting $67Px_K$.

C is a constant setting $67Px_C$.

I is measured phase current from line CT

IDMT Characteristic	К	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	
IEC Very inverse	13.5	1.0	0	2	
IEC Extremely inverse	80.0	2.0	0	3	
IEC Long-time inverse	120.0	1.0	0	4	-
IEC User inverse	К	α	С	5	

The timer model is determined by the setting67*Px_Op_Curve_Type*. The details are as follows.

When the $67Px_0p_Curve_Type = 0$, the operation is activated after the operation timer has reached the value set by $67Px_0p_T$. If a drop-off situation happens, that is, a fault suddenly

disappears before the operate delay is exceeded, the operation will reset.

When the $67Px_Op_Curve_Type = 1 \sim 5$, the operation is activated after the operation timer has reached the value set by IDMT curve. However, $67Px_Min_Op_T$ defines the minimum desired operate time for IDMT. If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the operation will reset.

NOTICE!

The $67Px_Min_Op_T$ setting should be used with great care because the operation time is according to the IEC curve, but always at least the value of the $67Px_Min_Op_T$ setting.

3.4.3 Logic Diagram

Figure 3.4-2 Logic Diagram for 67P

3.4.4 Settings

Table of to bottinge of total of a goal of the foreign of the protocol of

No.	Name	Values (Range)	Unit	Step	Default	Description
1	67P1_Cur_Str	0.02ln~20ln	А	0.01	20.00	Operating phase current level

No.	Name	Values (Range)	Unit	Step	Default	Description
						for stage 1
2	67P1_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 1
3	67P1_UL_Blk	0.00~100.00	V	0.01	70.00	Stage 1 setting of blocking voltage
4	67P1_U2_Blk	0.00~100.00	V	0.01	20.00	Stage 1 setting of Negative voltage
5	67P1_Str_Ph_Num	1 out of 3 2 out of 3 3 out of 3	-	1	3	Number of phases required for op (1 of 3, 2 of 3, 3 of 3)
6	67P1_Ang_RCA	0.0~360.0	Deg	0.1	270.0	Relay characteristic angle (RCA)
7	67P1_Dir_Mod.	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"
8	67P1_Dir_VTSBlk_Ena	0/1	-	1	0	Enabling/Disabling phase overcurrent protection with direction control element is blocked by VT circuit failure when VT circuit supervision is enabled and VT circuit fails
9	67P1_K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
10	67P1_Hm2_IRIs	2.00~30.00	A	0.01	20.00	current setting for inrush current detection
11	67P1_Hm2_Mod	0~2	-	1	0	The option of harmonic blocking mode: 0:phase blocking 1:cross blocking 2: maximum phase blocking
12	67P1_Op_Curve_Type	0~5	-	1	0	Option of characteristic curve for stage 1
13	67P1_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 1
14	67P1_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time for inverse curves for stage 1
15	67P1_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67P Stage 1

No.	Name	Values (Range)	Unit	Step	Default	Description
16	67P1_C	0.000~10.000	-	0.001	0.000	constant C of 67P Stage 1
17	67P1_K	0.001~100.000	-	0.001	1.000	constant K of 67P Stage 1
18	67P1_Hm2_Ena	0/1	-	1	0	Stage 1 Operation setting of harmonic detecting element Enable/Disable
19	67P1_Vol_Blk_Ena	0/1	-	1	0	Stage 1 Operation setting of voltage Enable/Disable
20	67P1_Ena	0/1	-	1	0	Operation 0/ 1
21	67P2_Cur_Str	0.02In~20In	A	0.01	20.00	Operating phase current level for stage 2
22	67P2_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 2
23	67P2_UL_Blk	0.00~100.00	V	0.01	70.00	Stage 2 setting of blocking voltage
24	67P2_U2_Blk	0.00~100.00	V	0.01	20.00	Stage 2 setting of Negative voltage
25	67P2_Str_Ph_Num	1 out of 3 2 out of 3 3 out of 3	-	1	3	Number of phases required for op (1 of 3, 2 of 3, 3 of 3)
26	67P2_Ang_RCA	0.0~360.0	Deg	0.1	270.0	Relay characteristic angle (RCA)
27	67P2_Dir_Mod.	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"
28	67P2_Dir_VTSBlk_Ena	0/1	-	1	0	Enabling/Disabling phase overcurrent protection with direction control element is blocked by VT circuit failure when VT circuit supervision is enabled and VT circuit fails
29	67P2_K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
30	67P2_Hm2_IRIs	2.00~30.00	A	0.01	20.00	current setting for inrush

T

G

No.	Name	Values (Range)	Unit	Step	Default	Description
						current detection
31	67P2_Hm2_Mod	0~2	-	1	0	The option of harmonic blocking mode: 0:phase blocking 1:cross blocking 2: maximum phase blocking
32	67P2_Op_Curve_Type	0~5	-	1	0	Option of characteristic curve for stage 2
33	67P2_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 2
34	67P2_Min_Op_T	0.000~60.000	s	0.001	0.050	Minimum operate time for inverse curves for stage 2
35	67P2_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67P Stage 2
36	67P2_C	0.000~10.000	-	0.001	0.000	constant C of 67P Stage 2
37	67P2_K	0.001~100.000	-	0.001	1.000	constant K of 67P Stage 2
38	67P2_Hm2_Ena	0/1	-	1	0	Stage 2 Operation setting of harmonic detecting element Enable/Disable
39	67P2_Vol_Blk_Ena	0/1	-	1	0	Stage 2 Operation setting of voltage Enable/Disable
40	67P2_Ena	0/1	-	1	0	Operation 0/ 1
41	67P3_Cur_Str	0.02ln~20ln	A	0.01	20.00	Operating phase current level for stage 3
42	67P3_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 3
43	67P3_UL_Blk	0.00~100.00	V	0.01	70.00	Stage 3 setting of blocking voltage
44	67P3_U2_Blk	0.00~100.00	V	0.01	20.00	Stage 3 setting of Negative voltage
45	67P3_Str_Ph_Num	1 out of 3 2 out of 3 3 out of 3	-	1	3	Number of phases required for op (1 of 3, 2 of 3, 3 of 3)
46	67P3_Ang_RCA	0.0~360.0	Deg	0.1	270.0	Relay characteristic angle (RCA)
47	67P3_Dir_Mod.	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"

No.	Name	Values (Range)	Unit	Step	Default	Description
48	67P3_Dir_VTSBlk_Ena	0/1	-	1	0	Enabling/Disabling phase overcurrent protection with direction control element is blocked by VT circuit failure when VT circuit supervision is enabled and VT circuit fails
49	67P3_K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
50	67P3_Hm2_IRIs	2.00~30.00	A	0.01	20.00	current setting for inrush current detection
51	67P3_Hm2_Mod	0~2	-	1	0	The option of harmonic blocking mode: 0:phase blocking 1:cross blocking 2: maximum phase blocking
52	67P3_Op_Curve_Type	0~5	-	1	0	Option of characteristic curve for stage 3
53	67P3_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 3
54	67P3_Min_Op_T	0.000~60.000	s	0.001	0.050	Minimum operate time for inverse curves for stage 3
55	67P3_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67P Stage 3
56	67P3_C	0.000~10.000	-	0.001	0.000	constant C of 67P Stage 3
57	67P3_K	0.001~100.000	-	0.001	1.000	constant K of 67P Stage 3
58	67P3_Hm2_Ena	0/1	-	1	0	Stage 3 Operation setting of harmonic detecting element Enable/Disable
59	67P3_Vol_Blk_Ena	0/1	-	1	0	Stage 3 Operation setting of voltage Enable/Disable
60	67P3_Ena	0/1	-	1	0	Operation 0/ 1
61	67P4_Cur_Str	0.02In~20In	A	0.01	20.00	Operating phase current level for stage 4
62	67P4_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 4
63	67P4_UL_Blk	0.00~100.00	V	0.01	70.00	Stage 4 setting of blocking voltage

No.	Name	Values (Range)	Unit	Step	Default	Description
64	67P4_U2_Blk	0.00~100.00	V	0.01	20.00	Stage4 setting of Negative
		1 out of 3				Number of phases required for
65	67P4 Str Ph Num	2 out of 3	_	1	3	on (1 of 3
00		2 out of 3			Ű	2 of 3, 3 of 3
						Relay characteristic angle
66	67P4_Ang_RCA	0.0~360.0	Deg	0.1	270.0	(RCA)
						Directional mode:0-2 for
67	67P4 Dir Mod.	0~2	-	1	0	"Non-directional", "Forward" or
0.	•··· ·_=·	~ <u>-</u>			, , , , , , , , , , , , , , , , , , ,	"Reverse"
						Enabling/Disabling phase
						overcurrent protection with
						direction control element is
68	67P4_Dir_VTSBlk_Ena	0/1	-	1	0	blocked by VT circuit failure
						when VT circuit supervision is
						enabled and VT circuit fails
						Coefficient of second
69	67P4 K Hm2	0.00~1.00	-	0.01	0.10	harmonics for inrush current
		0.00 1.00				detection
						current setting for inrush
70	67P4_Hm2_IRls	2.00~30.00	A	0.01	20.00	current detection
						The option of harmonic
						blocking mode:
71	67P4_Hm2_Mod	0~2	-	1	0	0:phase blocking
						1:cross blocking
						2: maximum phase blocking
						Option of characteristic curve
72	67P4_Op_Curve_Type	0~5	-	1	0	for stage 4
						Time multiplier for the inverse
73	67P4_T_Mult	0.050~200.000	-	0.001	10.000	time delay
						for stage 4
74	67D4 Min On T	0.000 60.000	_	0.001	0.050	Minimum operate time for
74	67P4_10111_0p_1	0.000~60.000	S	0.001	0.050	inverse curves for stage 4
75	67D4 Alpha	0.00.2.00		0.01	1.00	constant α of
75	67P4_Alpha	0.00~3.00	-	0.01	1.00	67P Stage 4
76	6704 0	0.000 10.000		0.001	0.000	constant C of
70	07F4_0	0.000~10.000	-	0.001	0.000	67P Stage 4
77	67D4 K	0.001.100.000		0.001	1 000	constant K of
11	0/F4_N	0.001~100.000		0.001	1.000	67P Stage 4
						Stage 4 Operation setting of
78	67P4_Hm2_Ena	0/1	-	1	0	harmonic detecting element
						Enable/Disable

No.	Name	Values (Range)	Unit	Step	Default	Description
79	67P4_Vol_Blk_Ena	0/1	-	1	0	Stage 4 Operation setting of voltage Enable/Disable
80	67P4_Ena	0/1	-	1	0	Operation 0/ 1

3.5 Thermal Overload Protection (49)

3.5.1 Overview

The relay incorporates a current based thermal calculation, using load current to model heating and cooling of the protected plant. The heat generated within an item of the plant, such as a cable or a transformer, is the resistiveloss. Thus, heating is directly proportional to current squared. The thermal timecharacteristic used in the relay is therefore based on current squared, integrated over time. Therelay automatically uses the largest phase current for input to the thermal calculation.

Equipment is designed to operate continuously at a temperature corresponding to its full loadrating, where heat generated is balanced with heat dissipated by radiation etc. If the temperature of the protected object reaches the warning level, the alarm signal is given out. If the temperature continues to increase to the maximum allowed temperature value, the protection issues a trip signal to the protected line.

In addition, the 49 can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.5.1.1 Function Block

The function block of the protection is as below.

Figure 3.5-1 Function block

3.5.1.2 Signals

Table	3 5-1	VTS	Innut	Signals
Iane	J.J-1	V I O	πipuι	Jignais

NO.	Signal	Description
1	la,lb,lc	The current in all the three phases
2	49_Clr_Therm	The input signal of clearing therm
3	49_Str	The start signal

NO.	NO. Signal Description				
4	49_Op	The operate signal			
5	49_Alm	The alarm signal			

3.5.2 Logic Diagram

Figure 3.5-2 Functional module diagram

3.5.3 Protection Principle

The thermal overload protection function has two stages: one for alarm and two for tripping, which can be enabled or disabled by setting the corresponding 49_Alm_Ena and 49_Trp_Ena parameter values as "1" or "0".

The operation of three-phase thermal protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

The function continuously checks the highest measured phase current valueand reports the highest value to the temperature estimator.

The final temperature rise is calculated from the highest of the three-phase currents according to the expression(the 1st ~ 7th harmonics of the phase current is taken into account):

$$\theta_{t+1} = (\frac{I}{k \cdot I_{R}})^{2} (1 - e^{-\frac{t}{\tau}}) + \theta_{t} \cdot e^{-\frac{t}{\tau}}$$

I RMS value of the max fault phase current (the 1st ~ 7th harmonics of the phase current is taken into account).

K set value of 49_*K*_*Factor*.

 I_B the rated current.

 τ the set value of 49_T_Mult.

 θ_t is the initial thermal state, if the initial thermal state is 30%, the θ_t is 0.3. θ_t is calculated from the following equation: $I_P{}^2 = \Theta_t \cdot (k \cdot I_B)^2$. For the heat rising process, lp is the previous current 100ms before the heat first rises; for the cooling process, the lp is the trip current.

 θ_{t+1} The trip or alarm thermal state: θ_{Trip} (the setting value 49_K_Trp) or θ_{Alarm} (the

setting 49_*K*_*Alm*). For cooling process, the θ_{t+1} is the return value.

When the component temperature reaches the set alarm level 49_K_Alm , the output signal 49_Alm is issued. When the component temperature reaches the set trip level 49_K_Tp , the 49_Op output is activated.

There is also a calculation of the present time to operation with the present current. This is only calculated if the final temperature is calculated to be above the operation temperature.

The time to operate can be calculated as:

$$t = \tau \times \ln \frac{I^2 - \theta_t (k \cdot I_B)^2}{I^2 - \theta_{t+1} (k \cdot I_B)^2}$$

The time to lockout release is calculated, that is, the calculation of the cooling time to a set value. The calculated temperature can be reset to its initial value via a control parameter that is located under the clear menu.

The temperature calculation is initiated from the value defined with the initial temperature. This is done in case the IED is powered up, the function is turned off and back on or reset through the 49_*Clr_Therm*input.

The function is cold turned on before 10 min of the IED powered up. If $(I/(k * I_B))^2$ is more than the set value of $49_K_T rp$, the $49_S tr$ output is activated.

The temperature is also stored in the nonvolatile memory and restored in case the IED is restarted.

3.5.4 Settings

No.	Name	Values(Range)	Unit	Step	Default	Description
1	49_Rated_Cur	0.02ln~3ln	А	0.01	1.00	Rated current
2	49_T_Mult	1~6000	S	1	600	Time multiplier
3	49_K_Factor	1.00~5.00	-	0.01	1.05	Temperature factor
А	40 K Tro	E0 200	0/	1	100	Temperature level for
4	49_K_11p	50~200	70	I	100	tripping
Б	40 K Alm	0 100	0/	1 00		Temperature level for
5	49_K_AIII	0~100	70	Ι	90	alarm
6	40 Tro Epo	0/1		1	0	Trip function
Ö	49_1rp_Ena	0/1	-	I	0	disable/enable
7		0/4		1	0	Alarm function
1	49_Alm_Ena 0/1 - 1	U	disable/enable			

 Table 3.5-2 settings of Three-phase thermal overload protection

3.6 Earth Fault Protection (67N/50/51N)

3.6.1 Overview

In electrical power industry, earth fault protection (67N) is very important and need to detect very accurate earth fault value and clear this fault as soon as possible. When earth fault is happening in the power system, according to ohm law current always follow the low resistive path and all current goes into the grounding system and it's a main reason to increase the current level of zero-sequence current.

Earth fault protection (67N) is operation based on zero-sequence current. If the detection level of zero-sequence current is greater than set value, the earth fault protection will operate and protect the system.

In addition, the 67N can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.6.1.1 Function Block

3.6.1.2 Signals

Table 3.6-167N Input Signals

NO.	Signal	Description
1	la, lb, lc	the three phase current.
2	Ua, Ub, Uc	the three phase voltage
3	310	The Measured neutral current

NO.	Signal	Description
4	67N1_Blk	Block signal of 67N stage1
5	67N2_Blk	Block signal of 67N stage2
6	67N3_Blk	Block signal of 67N stage3
7	67N4_Blk	Block signal of 67N stage4

Table 3.6-267N Output Signals

NO.	Signal	Description
1	67N1_Str	start signal from stage1
2	67N1_Op	Operation signal from stage1
3	67N1_OPENHm2	Voltage open signal from stage1
4	67N1_OPENDir	Directional open signal from stage1
5	67N2_Str	start signal from stage2
6	67N2_Op	Operation signal from stage2
7	67N2_OPENHm2	Voltage open signal from stage2
8	67N2_OPENDir	Directional open signal from stage2
9	67N3_Str	start signal from stage3
10	67N3_Op	Operation signal from stage3
11	67N3_OPENHm2	Voltage open signal from stage3
12	67N3_OPENDir	Directional open signal from stage3
13	67N4_Str	start signal from stage4
14	67N4_Op	Operation signal from stage4
15	67N4_OPENHm2	Voltage open signal from stage4
16	67N4_OPENDir	Directional open signal from stage4

3.6.2 Protection Principle

The earth fault protection includesfour stages of zero sequence overcurrent protection with independent logic function and settings. Each stage can be selected as definite time or inverse time characteristic as required. All IEC standard inverse time characteristics curves are optional. Direction control element can be used to block each stage earth fault protection independently, when the directionality of the fault current should be considered. There are three settable options: no direction, forward direction and reverse direction. The base value, zero sequence current, is selectable. Therefore, both of the externally sampling neutral current and internally calculated residual current can be used as the base value based on the practical situation.

3.6.2.1 Zero-sequence Overcurrent Element

The operation criterion for each stage of earth fault protection can be expressed as below:

$$3I0 > 67Nx_Cur_Str$$

Where:

310 is the calculated residual current.or the sampling neutral current

 $67Nx_Cur_Str$ is the zero sequence current setting of stage x (x=1, 2, 3, or 4) of earth fault protection

If the sampling residual current is available for the protection function, that is there is a external residual current wired from the neutral point, the residual current can be used as the operation quantity for the EF protection. Otherwise the internally calculated residual current from the three phase currents will be used instead. The operating quantity is compared to the set67 Nx_Cur_Str . If the operating quantity exceeds the set, the start signal will be activated and the timer element will start count the time.

3.6.2.2 Zero-sequence Current Direction Control Element

The directionality of the operation can be selected with the $67Nx_Dir_Mod$ setting. Three options, "Non-directional", "Forward" or "Reverse", are optional for the practical situation.

Self-polarizing is used $(I_0-(-U_0))$ to determine the fault direction.

The forward directionality is evaluatedbased on the below equation:

$$-90^{\circ} < \arg \frac{\dot{I}_{r} e^{j\alpha}}{-\dot{U}_{r}} < +90^{\circ}$$

The reverse directionality is evaluated based on the below equation:

$$90^{\circ} < \arg \frac{I_r e^{s_r}}{-\dot{U}_r} < +270^{\circ}$$

 $\dot{\tau}$ ia

 I_0 and U_0 are the current and voltage of the Self-polarizing. RCA means the characteristic angle.

3.6.2.3 Second harmonic detecting element

The ratio of second harmonic in three-phase current or measured neutral current to fundamental

harmonic is taken as criterion for blocking of 67N, and the operating formula is given as below:

$$I_{2nd} > 67$$
N_K_Hm2 * I_{1st}

Where:

I_{2nd} means second harmonic in three-phase current or measured neutral current;

*I*_{1st} represents fundamental harmonic of three-phase current or measured neutral current at corresponding phase;

67Nx_K_Hm2 is second harmonic restraint coefficient.

When the fundamental current is greater than the setting 67Nx_Hm2_IRIs, the correspondingphase will be unblocked by harmonic control element.

3.6.2.4 Characteristic Curve

Eachstagecan be selected as definite time or inverse time characteristic depending on the practical demand.

The inverse time calculating eqation is listed as follows.

$$t = \left(\frac{k}{\left(I/I_p\right)^{\alpha} - 1} + C\right) \times T_p$$

Where:

*I*_pis current setting67*Nx_Cur_Str*.

 T_p is time multiplier setting $67Nx_T_Mult$.

 α is a constant setting 67Nx_Alpha.

K is a constant setting $67Nx_K$.

C is a constant setting $67Nx_C$.

310is the operating quantity, the selected neutral current or calculated residual current.

IDMT Characteristic	к	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	
IEC Very inverse	13.5	1.0	0	2	
IEC Extremely inverse	80.0	2.0	0	3	
IEC Long-time inverse	120.0	1.0	0	4	•
IEC User inverse	К	α	С	5	

The timer model can be selected by modifying the setting 67*Nx_0p_Curve_Type*.

When the $67Nx_Op_Curve_Type = 0$, the operation is activated after the operation timer element has reached the value set by $67Nx_Op_T$. If a drop-off situation happens, that is, a fault suddenly

disappears and the fault current drop lower than the current setting, before the operate delay is exceeded, the operation will reset.

When the $67Nx_Op_Curve_Type = 1 \sim 5$, the operation is activated after the operation timer has reached the value determined by the IDMT curve. However, $67Nx_Min_Op_T$ limits the minimum possible operate time under IDMT mode, that is, the operation time should not be less than the $67Nx_Min_Op_T$. If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the operation will reset.

NOTICE!

The $67Nx_Min_Op_T$ setting should be setvery cautiously because at least the operating time should exceed the $67Nx_Min_Op_T$ setting even though the operation time is calculated according to the IDMT curve.

3.6.3 Logic Diagram

3.6.4 Settings

No. Name Unit Step Default Description (Range)	No. Name	Values (Range)	Unit	Step	Default	Description
--	----------	-------------------	------	------	---------	-------------

No.	Name	Values (Range)	Unit	Step	Default	Description
1	67N1_Cur_Str	0.02ln~20.00ln	A	0.01	20.00	Operating current level for stage 1
2	67N1_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 1
3	67N1_Ang_RCA	0.0~360.0	Deg	0.1	90.0	Relay characteristic angle (RCA)
4	67N1_Dir_Mod	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"
5	67N1 _K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
6	67N1_Hm2_IRls	2.00~30.00	A	0.01	20.00	current setting for inrush current detection
7	67N1_Op_Curve_Type	0~5	-	1	1	Option of characteristic curve for stage 1
8	67N1_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 1
9	67N1_Min_Op_T	0.000~60.000	s	0.001	0.050	Minimum operate time for inverse curves for stage 1
10	67N1_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67N Stage 1
11	67N1_C	0.000~10.000	-	0.001	0.000	constant C of 67N Stage 1
12	67N1_K	0.001~100.000	-	0.001	1.000	constant K of 67N Stage 1
13	67N1_Hm2_Ena	0/1	-	-	0	Enable second harmonicsdetection: 1 Disable second harmonicsdetection: 0
14	67N1_ZC_Ena	0/1	-	-	0	Zero-sequence current comes fromthree-phase current : 1 Zero-sequence current from the external : 0

(G

No.	Name	Values (Range)	Unit	Step	Default	Description
15	67N1_Ena	0/1	-	-	0	Operation 0/ 1
16	67N2_Cur_Str	0.02ln~20.00ln	A	0.01	20.00	Operating current level for stage 2
17	67N2_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 2
18	67N2_Ang_RCA	0.0~360.0	Deg	0.1	90.0	Relay characteristic angle (RCA)
19	67N2_Dir_Mod	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"
20	67N2 _K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
21	67N2_Hm2_IRIs	2.00~30.00	A	0.01	20.00	current setting for inrush current detection
22	67N2_Op_Curve_Type	0~5	-	1	1	Option of characteristic curve for stage 2
23	67N2_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 2
24	67N2_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time for inverse curves for stage 2
25	67N2_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67N Stage 2
26	67N2_C	0.000~10.000	-	0.001	0.000	constant C of 67N Stage 2
27	67N2_K	0.001~100.000	-	0.001	1.000	constant K of 67N Stage 2
28	67N2_Hm2_Ena	0/1	-	-	0	Enable second harmonicsdetection: 1 Disable second harmonicsdetection: 0

No.	Name	Values (Range)	Unit	Step	Default	Description
29	67N2_ZC_Ena	0/1	-	-	0	Zero-sequence current comes fromthree-phase current : 1 Zero-sequence current from the external : 0
30	67N2_Ena	0/1	-	-	0	Operation 0/ 1
31	67N3_Cur_Str	0.02ln~20.00ln	А	0.01	20.00	Operating current level for stage 3
32	67N3_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 3
33	67N3_Ang_RCA	0.0~360.0	Deg	0.1	90.0	Relay characteristic angle (RCA)
34	67N3_Dir_Mod	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"
35	67N3 _K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
36	67N3_Hm2_IRls	2.00~30.00	А	0.01	20.00	current setting for inrush current detection
37	67N3_Op_Curve_Type	0~5	-	1	1	Option of characteristic curve for stage 3
38	67N3_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 3
39	67N3_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time for inverse curves for stage 3
40	67N3_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67N Stage 3
41	67N3_C	0.000~10.000	-	0.001	0.000	constant C of 67N Stage 3
42	67N3_K	0.001~100.000	-	0.001	1.000	constant K of 67N Stage 3
43	67N3_Hm2_Ena	0/1	-	-	0	Enable second harmonicsdetection: 1 Disable second harmonicsdetection: 0

No.	Name	Values (Range)	Unit	Step	Default	Description
44	67N3_ZC_Ena	0/1	-	-	0	Zero-sequence current comes fromthree-phase current : 1 Zero-sequence current from the external : 0
45	67N3_Ena	0/1	-	-	0	Operation 0/ 1
46	67N4_Cur_Str	0.02ln~20.00ln	A	0.01	20.00	Operating current level for stage 4
47	67N4_Op_T	0.020~100.000	S	0.001	10.000	Def time delay or add time delay for inverse char of stage 4
48	67N4_Ang_RCA	0.0~360.0	Deg	0.1	90.0	Relay characteristic angle (RCA)
49	67N4_Dir_Mod	0~2	-	1	0	Directional mode:0-2 for "Non-directional", "Forward" or "Reverse"
50	67N4_K_Hm2	0.00~1.00	-	0.01	0.10	Coefficient of second harmonics for inrush current detection
51	67N4_Hm2_IRls	2.00~30.00	A	0.01	20.00	current setting for inrush current detection
52	67N4_Op_Curve_Type	0~5	-	1	1	Option of characteristic curve for stage 4
53	67N4_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 4
54	67N4_Min_Op_T	0.000~60.000	s	0.001	0.050	Minimum operate time for inverse curves for stage 4
55	67N4_Alpha	0.00~3.00	-	0.01	1.00	constant α of 67N Stage 4
56	67N4_C	0.000~10.000	-	0.001	0.000	constant C of 67N Stage 4
57	67N4_K	0.001~100.000	-	0.001	1.000	constant K of 67N Stage 4
58	67N4_ Hm2_Ena	0/1	-	-	0	Enable second harmonicsdetection: 1 Disable second harmonicsdetection: 0
59	67N4_ZC_Ena	0/1	-	-	0	Zero-sequence current comes fromthree-phase

No.	Name	Values (Range)	Unit	Step	Default	Description
						current : 1
						Zero-sequence current from
						the external : 0
60	67N4_Ena	0/1	-	-	0	Operation 0/ 1

3.7 Restricted Earth Fault Protection (64REF)

3.7.1 Overview

The single-phase or two-phase grounding fault with high resistance occurs when the load of the transformer is low, and the sensitivity of the Transformer differential protection (87T) is limited. Therefore, the restricted Earth Fault protection (64REF) is set as the main protection for single-phase and two-phase grounding fault in the area. The operation calculation of limited earth fault protection (64REF) is based on differential current and limited current.

- The vector sum calculated by the zero sequence current external to the neutral point and the zero sequence current generated by the switch CT is the differential current.
- The maximum value of the zero sequence current external to the neutral point and the zero sequence current generated by the switch CT is the protective braking current

When the internal fault is happening in the winding of power transformer and the total earth fault current is equal to the deference of current. To increase the high operated accuracy of Restricted Earth Fault Protection (64REF) is dependently operate only fault current without any interference of load current. When an internal fault occurs in a power transformer winding, the total ground fault current is equal to the difference of zero sequence current.Limited ground fault protection (64REF) only depends on fault current and will not be affected by load current, so the operation speed will be greatly improved.

This protection can be configured using any type of transformer, such as two - winding, three - winding, autotransformer. In addition, 64REF can be configured on the high voltage side, middle voltage side or low voltage side of the transformer.

3.7.1.1 Function Block

3.7.1.2 Signals

Table 3.7-164REF Input Signals

NO.	Signal	Description
1	Id0	Differential current of 64REF
2	64REF_Blk	Block signal of 64REF

Table 3.7-264REF Output Signals

NO.	Signal	Description
1	64REF_Str	Start signal from 64REF
2	64REF_Op	Operation signal from 64REF
3	64REF_CT_Satu	CT Saturation signal from 64REF
4	64REF_CT_Fail	CT fail singal from 64REF
5	64REF_I0Neu	I0>B0×I Signal from 64REF

3.7.2 Protection Principle

3.7.2.1 Fault Detector

REF's pickup criterion is:

$$I_{0d} = 64REF _Cur _Str$$

Where:

 I_{0d} is the residual differential current of some side.

3.7.2.2 Amplitude Compensation

If CTs used for REF have different primary rated values, the device will automatically adjust the currents with respective correction ratio shown as below.

$$K_{lph-X} = \frac{K_{TA-X}}{K_{TA-H}}$$

Where:

 K_{TA-X} primary side sampled zero-seq CT ratio.

 $K_{\rm TA-H}$ primary side CT ratio. Primary side is reference and Kp is 1.

Transformer balance factor is calculated by this formula. When compensation, multiply current and Kp.

3.7.2.3 Calculate Differential and Restraint Current

REF differential current and restraint current are calculated as the following formulas :

$$I_{0d} = |\dot{I}_{0Cal} + \dot{I}_{0Neu}|$$
$$I_{0r} = \max\{|\dot{I}_{0Cal}|, |\dot{I}_{0Neu}|\}$$

Where:

I_{0d} is the REF differential current;

Ior is the residual restraint current;

I_{0Cal} is the residual current of the phase currents;

 I_{0Neu} is the neutral measured current;

Figure 3.7-1 REF principle diagram

3.7.2.4 Operation Criterion

The operation criteria of REF protection are as follows:

$$\begin{cases} I_{0d} > I_{0cdqd} \\ I_{0d} > K * I_{0r} \\ I_{0Neu} > I_{0cdqd} / 4 \end{cases}$$

Where:

 $I_{0d} = \left| \dot{I}_{0CaI} + \dot{I}_{0Neu} \right|, I_{0r} = \max\left\{ \left| \dot{I}_{0CaI} \right|, \left| \dot{I}_{0Neu} \right| \right\}, \dot{I}_{0Neu}$ are respectively residual current of the

phase currents and neutral measured current. For this device, the ratio restrainted coefficient fixedly takes 0.6.

3.7.2.5 Operation Characteristic

Figure 3.7-2 Operation characteristic of REF

Where:

Id is the differential current; Ir is the restraint current; 64REF_Cur_Str is the start of differential current.

3.7.2.6 CT Transient Characteristic Difference Detection

To prevent the effect of incorrect differential circuit zero-sequence current on DIFF_REF in case of CT transient characteristic difference and CT saturation induced by external faults, the device integrates CT saturation criterion with positive-sequence current restraint at each side. When DIFF_REF protection trips, zero-sequence current at each side must fulfill the following formula.

$$3I_0 > B_0 \times I_1$$

Where:

 $_{3I_0}$ is the zero-sequence current at a side.

 I_1 is its corresponding positive-sequence current.

B₀is a proportional constant and the value is 0.6.

3.7.2.7 CT Saturation Detection

Please refer to Section 3.2.2.9 for details.

3.7.2.8 CT Circuit Failure

Please refer to Section 3.2.2.12 for details.

3.7.3 Logic Diagram

Where:

IOneu is the neutral measured residual current

3.7.4 Settings

Table 3.7-3 Settings of restricted earth fault protection

No.	Name	Values (Range)	Unit	Step	Default	Description
1	64REF_Cur_Str	0.05~20.00	IE	0.01	0.40	Pickup setting of REF
2	64REF_Cur_Alm	0.05~20.00	IE	0.01	1.00	Alm setting of REF
						Percentage restraint
3	64REF_Slope	0~0.9	-	0.01	0.6	coefficient of REF
						0.5 is recommended.
						Logic setting of
4	64RFF Ena	0/1	_	1	0	enabling/disabling REF
•		0/1			0	0: disable
						1: enable
	64REF_Alm_Ena	0/1	-	1	0	Logic setting of
						enabling/disabling
5						REF_Alm
						0: disable
						1: enable
		0/1	-		1	Logic setting of
						enabling/disabling neutral
6	64REF_NPCur_Ena			1		current criterion
						0: disable
						1: enable
						Logic setting of
7						enabling/disabling block
	GADEE CTS DIK Eng	0.1		1	0	biased differential element
1	04REF_CIS_DIK_EIIA	0,1		I	0	during CT circuit failure
						0: disable
						1: enable

3.8 Winding Differential Protection (87W/N)

3.8.1 Overview

When each side and common winding of auto-transformer are installed with three phase CTs, winding differential protection can be equipped. Winding differential protection is based on Kirchhoff's law, so inrush current has no effect on it. Winding differential protection consists of phase winding differential protection(87W) and residual winding differential protection(87N). Residual winding differential protection adopts the calculated residual current of each side and common winding for the protection calculation and three-phase CT polarity is easy to be checked. The operation principle of which is similar to that of REF, but compared to REF, winding differential protection.

3.8.1.1 Function Block

G

3.8.1.2 Signals

Table 3.8-1 87W Input Signals

NO.	Signal	Description
1	lda, ldb, ldc	Three phase winding differential current from 87W
2	3ld0	Residual winding differential current from 87N
3	87W_Blk	Block signal of 87W
4	87N_Blk	Block signal of 87N

Table 3.8-2 87W Output Signals

NO.	Signal	Description			
19	87W_Str	Start signal of differential from 87W			
20	87W_Str_A	Start_A signal of differential from 87W			
21	87W_Str_B	Start_B signal of differential from 87W			
22	87W_Str_C	Start_C signal of differential from 87W			
23	87W_Op	Operation signal of differential from 87W			
24	87W_Op_A	Operation_A signal of differential from 87W			
25	87W_Op_B	Operation_B signal of differential from 87W			
26	87W_Op_C	Operation_C signal of differential from 87W			
27	87N_Str	Start signal of differential from 87N			
28	87N_Op	Operation signal of differential from 87N			

3.8.2 Protection Principle

3.8.2.1 Fault Detector

87W/87N's pickup criterion is:

$$I_{wd} > 87W/87N_Cur_Str$$

Where:

 I_{wd} is the winding differential current.

3.8.2.2 Amplitude Compensation

If CTs used for 87W have different primary rated values, the device will automatically adjust the currents with respective correction ratio shown as below.

$$K_{lph-X} = \frac{K_{TA-X}}{K_{TA-H}}$$

Where:

 K_{TA-X} primary side sampled CT ratio.

 K_{TA-H} primary side CT ratio. Primary side is reference and Kp is 1.

Transformer balance factor is calculated by this formula. When compensation, multiply current and Kp.

3.8.2.3 Calculate Differential and Restraint Current

Winding differential current and restraint current are calculated as the following formulas :

The differential current is as follows.

$$\begin{bmatrix} I_{wdA} \\ I_{wdB} \\ I_{wdC} \\ I_{wd0} \end{bmatrix} = K_{wph1} \cdot \begin{vmatrix} I_{A1} \\ I_{B1} \\ I_{C1} \\ I_{01} \end{vmatrix} + K_{wph2} \cdot \begin{vmatrix} I_{A2} \\ I_{B2} \\ I_{C2} \\ I_{02} \end{vmatrix} + K_{wph3} \cdot \begin{vmatrix} I_{A3} \\ I_{B3} \\ I_{C3} \\ I_{03} \end{vmatrix} + K_{wph4} \cdot \begin{vmatrix} I_{A4} \\ I_{B4} \\ I_{C4} \\ I_{04} \end{vmatrix} + K_{wph5} \cdot \begin{vmatrix} I_{A5} \\ I_{B5} \\ I_{C5} \\ I_{05} \end{vmatrix} + K_{wph6} \cdot \begin{vmatrix} I_{A6} \\ I_{B6} \\ I_{C6} \\ I_{C6} \\ I_{06} \end{vmatrix}$$
$$I_{wdA} = I'_{A1} + I'_{A2} + I'_{A3} + I'_{A4} + I'_{A5} + I'_{A6}$$
$$I_{wdB} = I'_{B1} + I'_{B2} + I'_{B3} + I'_{B4} + I'_{B5} + I'_{B6}$$
$$I_{wdC} = I'_{C1} + I'_{C2} + I'_{C3} + I'_{C4} + I'_{C5} + I'_{C6}$$
$$I_{wd0} = I'_{01} + I'_{02} + I'_{03} + I'_{04} + I'_{05} + I'_{06}$$

The restraint current is:

 $I_{wrA} = MAX(|I'_{A1}|, |I'_{A2}|, |I'_{A3}|, |I'_{A4}|, |I'_{A5}|, |I'_{A6}|)$

$$I_{wrB} = MAX(|I'_{B1}|, |I'_{B2}|, |I'_{B3}|, |I'_{B4}|, |I'_{B5}|, |I'_{B6}|)$$

$$I_{wrC} = MAX(|I'_{C1}|, |I'_{C2}|, |I'_{C3}|, |I'_{C4}|, |I'_{C5}|, |I'_{C6}|)$$

$$I_{wr0} = MAX(|I'_{01}|, |I'_{02}|, |I'_{03}|, |I'_{04}|, |I'_{05}|, |I'_{06}|)$$

Where:

 I_{wdA} , I_{wdB} , I_{wdC} , I_{wd0} are respectively three phase and residual winding differential currents.

 I_{wrA} , I_{wrB} , I_{wrC} , I_{wr0} are secondary values of three phase restraint currents and residual restraint current respectively.

 I_{Am} , I_{Bm} , I_{Cm} , I_{0m} are respectively secondary values of three phase currents and calculated neutral current of branch m (m=1, 2, 3, 4, 5, 6).

 I'_{Am} , I'_{Bm} , I'_{Cm} , I'_{0m} are respectively secondary values of corrected three phase currents and calculated residual current of branch m (m=1, 2, 3, 4, 5, 6).

 $K_{\rm wphm}$ is corrected coefficient of each side for magnitude compensation respectively (m=1, 2, 3, 4, 5, 6).

3.8.2.4 Operation Criterion

The operation criteria of winding differential protection are as follows:

$$\begin{cases} I_{wd} > 87W/87N_Cur_Str \\ I_{wd} > I_{wr} * 87W/87N_Slope \end{cases}$$

Where:

 I_{wd} is the winding differential current.

 I_{wr} is the winding restraint current.

3.8.2.5 Operation Characteristic

Figure 3.8 -1 Operation characteristic of winding differential protection

Where:

 I_{wd} is the winding differential current.

 I_{wr} is the winding restraint current.

 $87W/87N_Cur_Str$ is the start of differential current.

3.8.2.6 CT Transient Characteristic Difference Detection

To prevent the effect of incorrect differential circuit zero-sequence current on 87N in case of CT transient characteristic difference and CT saturation induced by external faults, the device integrates CT saturation criterion with positive-sequence current restraint at each side. When 87N protection trips, zero-sequence current at each side must fulfill the following formula.

$$3I_0 > B_0 * I_1$$

Where:

- $3I_0$ is the zero-sequence current at a side.
- I_1 is its corresponding positive-sequence current.
- B_0 is a proportional constant and the value is 0.6.

3.8.2.7 CT Saturation Detection

Please refer to Section 3.2.2.9 for details.

3.8.2.8 CT Circuit Failure

Please refer to Section 3.2.2.12 for details.

3.8.3 Logic Diagram

Figure 3.8-2 Logic diagram of winding differential protection

3.8.4 Settings

Table 3.8-3 Settings of winding differential protection

No.	Name	Values (Range)	Unit	Step	Default	Description
1	87W/87N_Cur_Str	0.05~20.00	IE	0.01	0.40	Pickup setting of winding differential protection
2	87W/87N_Cur_Alm	0.05~20.00	IE	0.01	1.00	Alm setting of winding differential protection
3	87W/87N_Slope	0~0.9	-	0.01	0.6	Percentage restraint coefficient of winding differential protection 0.6 is recommended.
4	87W_Ena	0/1	-	1	0	Logic setting of enabling/disabling phase winding differential protection 0: disable 1: enable
	87N_Ena	0/1	-	1	0	Logic setting of enabling/disabling residual winding differential protection 0: disable 1: enable
5	87W_Alam_Ena	0/1	-	1	0	Logic setting of enabling/disabling 87W_AIm 0: disable 1: enable
6	87N_Alam_Ena	0/1	-	1	1	Logic setting of enabling/disabling 87N_Alm 0: disable 1: enable
7	87N_IG0_Ena	0/1	-	1	1	Zero-sequence current comes fromthree-phase current : 0 Zero-sequence current from the external : 1
8	87N _NPCur_Ena	0/1	-	1	1	Logic setting of enabling/disabling neutral current criterion 0: disable

No.	Name	Values (Range)	Unit	Step	Default	Description
						1: enable
	87W/87N_CTS_Blk_Ena	0,1	-	1	0	Logic setting of
						enabling/disabling block
9						biased differential element
						during CT circuit failure
						0: disable
						1: enable

3.9 Non-directional Instantaneous Earth Fault Protection(50N)

3.9.1 Overview

The main purpose of Instantaneous residual overcurrent protection 50N is to continuously monitor the protected network residual current with the combination of zero-sequence instrument transformer (CT). If any kind of trouble happen in protected electrical circuit likes open or short circuit, it's bring some type of disturbances. These disturbances will change the value of grounding impedance. If the detected value of restrain current is larger than set value of restrain current the protection will operate instantaneously.

In this protection have the capability of current multiplication factor for use only transformer inrush condition. This protection provides two stage controlling setting with definite time delay (DT) or IDMT time delay and also provide blocking function in case if CT trouble.

In addition, the 50N can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.9.1.1 Function Block

3.9.1.2 Signals

Table 3.9-1 50N Input Signals

NO.	Signal	Description

NO.	Signal	Description
4	la, lb, lc	the three phase current.
5	310	The Measured neutral current
6	50N_Blk	Block signal of 50N

Table 3.8-2 50NOutput Signals

NO.	Signal	Description
1	50N_Str	Common start signal from 50N
2	50N_Op	Operation signal from50N

3.9.2 Protection Principle

3.9.2.1 Zero-sequence Overcurrent Element

The operation criterion for earth fault protection is:

$$3I0 > 50N_Cur_Str$$

Where:

310 is the calculated residual current. Or the measured neutral current $50N_Cur_Str$ is the current setting of earth fault protection

If the measured residual current is configured to be available for the protection function it will be used as operating quantity. Otherwise the internally calculated residual current is used. The operating quantity is compared to the set $50N_Cur_Str$. If the measured value exceeds the set $50N_Cur_Str$, the level detector sends an enable-signal to the timer module.

3.9.3 Logic Diagram

Figure 3.9-1 Logic Diagram for 50N

3.9.4 Settings

No.	Name	Values (Range)	Unit	Step	Default	Description
1	50N_Cur_Str	0.02In~20In	А	0.01	20.00	Current setting of 50N
2	50N_H_K_Hm2	0.00~1.00	-	0.01	0.1	Coefficient of second harmonics for inrush current detection
3	50N_H_Hm2_I Rls	2.00~30.00	A	0.01	20.00	current setting for inrush current detection
4	50N_H_Hm2_E na	0/1	-	-	0	Enable second harmonicsdetection: 1 Disable second harmonicsdetection: 0
5	50N_ZC_Ena	0/1	-	1	0	Zero-sequence current comes fromthree-phase current : 1 Zero-sequence current from the external : 0
6	50N_Ena	0/1	-	1	0	Enabling/disabling of 50N 0: disable 1: enable

Table 3.9-3 Settings of earth fault protection

3.10 Breaker Failure Protection (50BF)

3.2

3.10.1 Overview

Breaker failure protection is applied to inter-trip each side of transformer when initiation signals of breaker failure protection from busbar protection or other device are received. When the binary input of external tripping is energized and current element picks up, a trip command will be issued with a time delay to trip circuit breakers at each side of transformer. the 50BF can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.10.1.1 Function Block

3.10.1.2 Signals

Table 3.10-1 50BFInput Signals

NO.	Signal	Description
7	la, lb, lc	the three phase current.
8	50BF_KI	Input signal of 50BF
9	50BF_Blk	Block signal of 50BF

Table 3.9-2 50BF Output Signals

NO.	Signal	Description			
3	50BF_Alm	Alarm signal from 50BF			
4	50BF_Op	Operation signal from 50BF			

3.10.2 Protection Principle

The device provides four kinds of current criteria including phase current criterion, zero-sequence current criterion, negative-sequence current criterion and DPFC current criterion. If any current criterion is satisfied, current element of breaker failure protection picks up.

1. Phase current criterion

$$I_{max} > 50BF_ Cur_I_Str$$

Where:

 I_{max} is the maximum value of three phase-current of some side.

2. Zero-sequence current criterion

3I0 > 50BF_ Cur_I0_Str

Where:

310 is three times calculated zero-sequence current of some side.

3. Negative-sequence current criterion

$$I_2 > 50BF_Cur_I2_Str$$

Where:

- I_2 is negative-sequence current of some side.
- 4. DPFC current criteria

$$\Delta I_{max} > \Delta I_{FDZ}$$

Where:

 ΔI_{max} is the floating threshold value which will arise automatically and gradually according to

increasing of the output of deviation component.

 ΔI_{FDZ} is the fixed threshold and does not need to be set on site.

3.10.3 Logic Diagram

3.10.4 Settings

No.	Item	Range	Unit	Step	Default	Description
1	50BF_Cur_I_Str	0.04ln~20ln	А	0.01	20.00	Operating phase current level
2	50BF_Cur_I0_Str	0.04ln~20ln	A	0.01	20.00	Operating zero-sequence current level
3	50BF_Cur_l2_Str	0.04ln~20ln	A	0.01	20.00	Operating Negative-sequence current level

No.	ltem	Range	Unit	Step	Default	Description
4	50BF_Op_T	0.00~10.00	S	0.01	10.00	Def time delay or add time delay
5	50BF_ltb_Ena	0/1	-	1	0	Logic setting of enabling/disabling DPFC current criterion to control breaker failure protection.
6	50BF_I_Ena	0/1	-	1	0	Logic setting of enabling/disabling phase current criterion to control breaker failure protection
7	50BF_I0_Ena	0/1	-	1	0	Logic setting of enabling/disabling zero-sequence current criterion to control breaker failure protection.
8	50BF_l2_Ena	0/1	-	1	0	Logic setting of enabling/disabling negative-sequence current criterion to control breaker failure protection.
9	50BF_Alm_Ena	0/1	-	1	0	Logic setting of enabling/disabling alarm of breaker failure protection
10	50BF_Trp_Ena	0/1	-	1	0	Logic setting of enabling/disabling time delay of breaker failure protection

3.11 Residual Overvoltage Protection (59N)

3.11.1 Overview

The main purpose of Three Stage Residual Overvoltage Protection (59N) is to continuously monitor the protected network residual overvoltage with the combination of zero-sequence instrument transformer (VT). If any kind of trouble happen in protected electrical circuit likes open or short circuit, it's bring some type of disturbances. These disturbances will change the value of grounding system impedance cause overvoltage in power system. If the detected value of restrain

overvoltage is larger than set value of restrain overvoltage the protection will operate immediately. This protection provides two stage controlling setting with definite time delay (DT) or IDMT time delay.

In this protection have the capability of blocking function if some trouble happens between VT circuit or IED logic circuit.

In addition, the 59N can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.11.1.1 Function Block

3.11.1.2 Signals

Table 3.11-1 59N Input Signals

NO.	Signal	Description		
1	59N1_Blk	Block signal of 59 stage1		
2	59N2_Blk	Block signal of 59 stage2		
3	59N3_Blk	Block signal of 59 stage3		
2	Ua,Ub,Uc	the three phase group signal for voltage inputs		
4	UN measuredresidual voltage			

Table 3.11-259G Output Signals

NO.	Signal	Description
1	59N1_Str	Start signal from 59G stage1
2	59N1_Op	Operation signal from 59G stage1
3	59N2_Str	Start signal from 59G stage2
4	59N2_Op	Operation signal from 59G stage2

NO. Signal		Description
5	59N3_Str	Start signal from 59G stage3
6	59N3_Op	Operation signal from 59G stage3

3.11.2 Protection Principle

Residual overvoltage protection includes two stages residual overvoltage element with independent logic, voltage and time delay settings. All the stages1 can be selected as definite-time or inverse-time characteristic. The inverse-time characteristic can be selected as IEC or ANSI/IEEE standard inverse-time characteristics and a user-defined inverse-time curve.

Residual overvoltage protection can select calculated residual voltage or measured residual voltage according to the setting $59Nx_ZC_Ena$ when calculated residual voltage is adopted, residual overvoltage protection can be blocked due to VT circuit failure if the setting $59Nx_VTS_Blk_Ena$ is set as "1".

3.11.2.1 Operation Criterion

 $3U0 > 59 \mbox{Nx_Vol_Stror} UN > 59 \mbox{Nx_Vol_Str}$

Where:

3U0 is calculated residual voltage;

UNismeasured residual voltage.

3.11.2.2 Time Curve

Stage 2 of residual overvoltage protection can be selected as definite-time or inverse-time characteristic, and inverse-time operating time curve is as follows

$$t(I) = \left(\frac{K}{(\frac{U}{U_{set}})^{\alpha} - 1} + C\right) \times T_p$$

Where:

K, α and *C* are constants.

U is actual measured or calculated residual voltage.

IDMT Characteristic	к	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	•
IEC Very inverse	13.5	1.0	0	2	•
IEC Extremely inverse	80.0	2.0	0	3	•
IEC Long-time inverse	120.0	1.0	0	4	•
IEC User inverse	К	α	С	5	

The user can select the operating characteristic from various inverse-time characteristic curves by setting $59Nx_0p_Curve_Type$.

In order to prevent it from undesired operation due to VT circuit failure when residual overvoltage protection adopts calculated residual voltage, it is available to blockresidual overvoltage protection according to the setting $59Nx_VTS_Blk_Ena$ and any of the following criterion is satisfied.

- 1) The device issues an alarm of corresponding side, Alm_VTS
- 2) VT of corresponding side is out of service, In_VT
- 3) Three phase voltages are all smaller than 1.2Un. (Un is secondary rated voltage)

3.11.3 Logic Diagram

Where:

- 3U0 is calculated residual or calculated voltage.
- UN is measured residual voltage

3.11.4 Settings

No.	Item	Range	Unit	Step	Default	Description
1	59N1 _Vol_Str	2.00~200.00	V	0.01	200.00	Voltage setting of stage 1 of residual overvoltage protection
2	59N1_Op_T	0.000~300.000	s	0.001	10.000	Definite time of stage 1 of residual overvoltage protection
3	59N1_Op_Curve_Type	0~5	-	-	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT

Table 3.11-3 Settings of residual overvoltage protection

No.	ltem	Range	Unit	Step	Default	Description
4	59N1_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage 1
5	59N1_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time for inverse curves for stage 1
6	59N1_Alpha	0.00~3.00	-	0.01	1.00	constant α of 59N Stage 1
7	59N1_C	0.000~10.000	-	0.001	0.000	constant C of 59N Stage 1
8	59N1_K	0.001~100.000	-	0.001	1.000	constant K of 59N Stage 1
9	59N1_ZC_Ena	0/1	-	1	0	Residual voltage option for the calculation of stage 1 of residual overvoltage protection 0: Measured residual voltage 1: Calculated residual voltage
10	59N1_VTS_Blk_Ena	0/1	-	1	0	When calculated residual voltage is adopted, residual overvoltage protection can be blocked due to VT circuit failure if the setting 59N1_VTS_BIk_Ena is set as "1".
11	59N1_Ena	0/1	-	1	0	Logic setting of enabling/disabling stage 1 of residual overvoltage protection 0: disable 1: enable
12	59N2 _Vol_Str	2.00~200.00	V	0.01	110.00	Voltage setting of stage 2 of residual overvoltage protection

No.	ltem	Range	Unit	Step	Default	Description
13	59N2_Op_T	0.000~300.000	S	0.001	10.000	Definite time of stage 2 of residual overvoltage protection
14	59N2_Op_Curve_Type	0~5	-	-	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT
15	59N2_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage2
16	59N2_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time for inverse curves for stage2
17	59N2_Alpha	0.00~3.00	-	0.01	1.00	constant α of 59N Stage 2
18	59N2_C	0.000~10.000	-	0.001	0.000	constant C of 59N Stage 2
19	59N2_K	0.001~100.000	-	0.001	1.000	constant K of 59N Stage 2
20	59N2_ZC_Ena	0/1	-	1	0	Residual voltage option for the calculation of stage 2 of residual overvoltage protection 0: Measured residual voltage 1: Calculated residual voltage
21	59N2_VTS_Blk_Ena	0/1	-	1	0	When calculated residual voltage is adopted, residual overvoltage protection can be blocked due to VT circuit failure if the setting 59N2 _VTS_Blk_Ena is set as "1".
22	59N2_Ena	0/1	-	1	0	Logic setting of enabling/disabling stage 2 of residual overvoltage protection 0: disable 1: enable

No.	ltem	Range	Unit	Step	Default	Description
23	59N3_Vol_Str	2.00~200.00	V	0.01	110.00	Voltage setting of stage 3 of residual overvoltage protection
24	59N3_Op_T	0.000~300.000	S	0.001	10.000	Definite time of stage 3 of residual overvoltage protection
25	59N3_Op_Curve_Type	0~5	-	-	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT
26	59N3_T_Mult	0.050~200.000	-	0.001	10.000	Time multiplier for the inverse time delay for stage3
27	59N3_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time for inverse curves for stage3
28	59N3_Alpha	0.00~3.00	-	0.01	1.00	constant α of 59N Stage 3
29	59N3_C	0.000~10.000	-	0.001	0.000	constant C of 59N Stage 3
30	59N3_K	0.001~100.000	-	0.001	1.000	constant K of 59N Stage 3
31	59N3_ZC_Ena	0/1	-	1	0	Residual voltage option for the calculation of stage 3 of residual overvoltage protection 0: Measured residual voltage 1: Calculated residual voltage
32	59N3_VTS_Blk_Ena	0/1	-	1	0	When calculated residual voltage is adopted, residual overvoltage protection can be blocked due to VT circuit failure if the setting 59N3_VTS_BIk_Ena is set as "1".
33	59N3_Ena	0/1	-	1	0	Logic setting of enabling/disabling stage 3 of residual overvoltage protection 0: disable 1: enable

3.3

3.12 Three-phase overvoltage protection (59P)

3.12.1 Overview

The main operating function of Two Stage Three-phase overvoltage protection (59P) is to continuously measure the protected network voltage limit cause by different faults, if the detected voltage limit is greater than set level the Two Stage Three-phase overvoltage the protection will operates or gives alarm signal with dependable multi stage definite time delay (DT) or inverse definite minimum time (IDMT) delay characteristics and each stage have same logics of setting. This protection has extra ordinary feature to operate with overcurrent protection.

59Pcan support several kind of VT connection:

- Three phase voltage (Ua, Ub, Uc)
- Three phase-to-phase voltages (Uab, Ubc, Uca)
- Two phase-to-phase voltages (Uab, Ubc)

Two Stage Three-phase overvoltage protection 59P is also have blocking function capability.

In addition, the 59P can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.12.1.1 Function Block

3.12.1.2 Signals

Table 3.12-1 59P Input Signals

NO.	Signal	Description
1	59P1_Blk	Block signal of 59P stage1
2	59P2_Blk	Block signal of 59P stage2
3	Ua,Ub,Uc	the three phase group signal for voltage inputs

NO.	Signal	Description
1	59P1_A_Str	phase A Start signal from 59P stage1
2	59P1_B_Str	phase B Start signal from 59P stage1
3	59P1_C_Str	phase C Start signal from 59P stage1
4	59P1_ Str	CommonStart signal from 59P stage1
5	59P1_A_Op	phase A Operation signal from 59P stage1
6	59P1_B_Op	phase B_Operation signal from 59P stage1
7	59P1_C_Op	phase C Operation signal from 59P stage1
8	59P1_ Op	Operation signal from 59P stage1
9	59P1_ Alm	Alarm signal from 59P stage1
10	59P2_A_Str	phase A Start signal from 59P stage2
11	59P2_B_Str	phase B Start signal from 59P stage2
12	59P2_C_Str	phase C Start signal from 59P stage2
13	59P2_Str	CommonStart signal from 59P stage2
14	59P2_A_Op	phase A Operation signal from 59P stage2
15	59P2_B_Op	phase B_Operation signal from 59P stage2
16	59P2_C_Op	phase C Operation signal from 59P stage2
17	59P2_ Op	Operation signal from 59P stage2
18	59P2_ Alm	Alarm signal from 59P stage2

3.12.2 Protection Principle

The three-phase overvoltage protection function can be enabled or disabled by setting the corresponding $59Px_Ena$ parameter values as "1" or "0".

The fundamental frequency component of the measured three phase voltages is compared phase-wise to the set value of the $59Px_Vol_Str$ setting. If the measured value is higher than the set value of the $59Px_Vol_Str$ setting, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases matches the set $59Px_Str_Ph_Num$ and no blocking signal input is activated, the phase selection logic activates the timer and the $59Px_Str$ output and the corresponding output of the respective phases $(59Px_Str_A/B/C)$.

The $59Px_Vol_Opt$ setting is used for selecting phase-to-earth ($59Px_Vol_Opt = 0$) or phase-to-phase($59Px_Vol_Opt = 1$) voltages for protection.

 $59Px_Vol_Str$ is the preset value to check for the voltage

59*Px_Str_Ph_Num* shows the number of phases required for operate activation.

Depending on the value of the set $59Px_0p_Curve_Type$, the time characteristics are selected according to DT ($59Px_0p_Curve_Type = 0$) or IDMT ($59Px_0p_Curve_Type = 1 \sim 5$). 59P supports the following IDMT operating curve type:

$$t(I) = \left(\frac{K}{\left(\frac{U}{U_{set}}\right)^{\alpha} - 1} + C\right) \times T_{p}$$

IDMT Characteristic	К	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	•
IEC Very inverse	13.5	1.0	0	2	•
IEC Extremely inverse	80.0	2.0	0	3	•
IEC Long-time inverse	120.0	1.0	0	4	•
IEC User inverse	К	α	С	5	-

When the operation timer has reached the value set by $59Px_Op_T$ in the DT mode or the value set by the IDMT operate time curve, the $59Px_Op$ output is activated. The corresponding output for the respective phases ($59Px_Op_A/B/C$) is also activated. For the IDMT model, $59Px_Min_Op_T$ defines the minimum desired operate time for IDMT.

If a drop-off situation occurs, that is, a fault suddenly disappears before the operation delay is exceeded, the reset state is activated, the timer is reset and the $59Px_Str$ output is deactivated.

The binary input $59Px_Blk$ can be used to block the function. The activation of the $59Px_Blk$ input deactivates all outputs and resets the internal timers. The binary input $59Px_Blk$ can be used to block the start signals and operating signals.

3.12.3 Logic Diagram

Figure 3.12-1Functional module diagram

Where:

 $59Px_0p_Curve_Type$ is the selection of the type of stage x(X=1,2)time delay curve.

 $59Px_0p_T$ is the operating time delay for stage x(X=1,2)definite time curve.

 $59Px_Min_Op_T$ is the minimum operate time delay for stage x(X=1,2)IDMT curves.

3.12.4 Settings

Table 3.12-3settings of Two stage Three-phase overvoltage protection

No.	Name	Values (Range)	Unit	Step	Default	Description
1	59P1_Vol_Str	0.00~160.00	V	0.01	160.00	Start value of overvoltage
2	59P1_Op_T	0.040~300.000	s	0.001	10.000	Operating time delay for definite time curve
3	59P1_Str_Ph_Num	1/2/3	-	1	3	Number of phases required for operate activation:1 for 1 phase, 2 for 2 phases, 3 for 3 phases
4	59P1_Op_Curve_Ty pe	0~5	-	1	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT
5	59P1_T_ Mult	0.050~200.000	-	0.001	10.000	Time multiplier in IEC curves
6	59P1_Min_Op_T	0.000~60.000	s	0.001	0.050	Minimum operate time delay for IDMT curves
7	59P1_Alpha	0.00~3.00	-	0.01	1.00	constant α of

No.	Name	Values (Range)	Unit	Step	Default	Description
						59P Stage 1
0	50D4 0	0.000 40.000		0.001	0.000	constant C of
8	59P1_C	0.000~10.000	-	0.001	0.000	59P Stage 1
0	50D1 K	0.001.100.000		0.001	1 000	constant K of
9	59F1_K	0.001~100.000	-	0.001	1.000	59P Stage 1
						Parameter to select phase or
10	59P1 Val Opt	0/1		1	0	phase-to- phase voltages: 0
10	001 1_V01_0pt	0/1	_	'	0	forphase voltages,1
						forphase-to- phase voltages
11	59P1_Alm_Ena	0/1	-	1	0	Alarm Off/On
12	59P1_Ena	0/1	-	1	0	Operation Off/On
13	59P2_Vol_Str	0.00~160.00	V	0.01	110.00	Start value of overvoltage
1/	59P2 On T	0.040~300.000	c	0.001	10.000	Operating time delay for
14	091 2_0p_1	0.040~300.000	3	0.001	10.000	definite time curve
						Number of phases required for
15	59P2_Str_Ph_Num	1/2/3	-	1	3	operate activation:1 for 1
15						phase, 2 for 2 phases, 3 for 3
						phases
						Selection of the type of time
16		0~5	-	1	0	delay curve:0 for DT, 1~5 for
						IDMT
17	59P2_T_ Mult	0.050~200.000	-	0.001	10.000	Time multiplier in IEC curves
18	59P2 Min Op T	0 000~60 000	s	0 001	0.050	Minimum operate time delay for
	Op_1	0.000 00.000	0	0.001	0.000	IDMT curves
19	59P2 Alpha	0.00~3.00	-	0.01	1.00	constant α of
						59P Stage 2
20	59P2 C	0.000~10.000	-	0 001	0.000	constant C of
				0.001	0.000	59P Stage 2
21	59P2 K	0.001~100.000	-	0.001	1.000	constant K of
				0.001		59P Stage 2
						Parameter to select phase or
22	59P2 Vol Opt	0/1	-	1	0	phase-to- phase voltages: 0
	001 2_001_0pt	0/1		I	Ũ	forphase voltages,1
						forphase-to- phase voltages
23	59P2_Alm_Ena	0/1	-	1	0	Alarm Off/On
24	59P2_Ena	0/1	-	1	0	Operation Off/On

3.13 Three-phase Undervoltage Protection (27P)

3.13.1 Overview

The main operating function of Two Stage Three-phase undervoltage protection (27P) is to continuously measure the protected network voltage limit cause by different faults, if the detected voltage limit is below to set level the Two Stage Three-phase undervoltage protection will operates or gives alarm signal with dependable multi stage definite time delay (DT) or inverse definite minimum time (IDMT) delay characteristics and each stage have same logics of setting. This protection has extra ordinary feature to operate with overcurrent protection.

27P can support several kind of VT connection:

- Three phase voltage (Ua, Ub, Uc)
- Three phase-to-phase voltages (Uab, Ubc, Uca)
- Two phase-to-phase voltages (Uab, Ubc)

Two Stage Three-phase undervoltage protection (27P) is also have blocking function capability.

In addition, the 27P can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

3.13.1.1 Function Block

3.13.1.2 Signals

Table 3.13-1 27P Input Signals

NO.	Signal	Description
1	Ua,Ub,Uc	"Ua,Ub,Uc" is the three phase group signal for voltage inputs
2	27P1_Blk	Block signal of 27P stage1

NO.	Signal	Description
	27P2_Blk	Block signal of 27P stage2

Table 3.13-227POutput Signals

NO.	Signal	Description
1	27P1_A_Str	phase A Start signal from 27P stage1
2	27P1_B_Str	phase BStart signal from 27P stage1
3	27P1_C_Str	phase C Start signal from 27P stage1
4	27P1_Str	CommonStart signal from 27P stage1
5	27P1_A_Op	phase A Operation signal from 27 Pstage1
6	27P1_B_Op	phase B Operation signal from 27P stage1
7	27P1_C_Op	phase C Operation signal from 27P stage1
8	27P1_Op	Operation signal from 27P stage1
9	27P1_Alm	Alarm signal from 27P stage1
10	27P2_A_Str	phase A Start signal from 27P stage2
11	27P2_B_Str	phase BStart signal from 27P stage2
12	27P2_C_Str	phase C Start signal from 27P stage2
13	27P2_Str	CommonStart signal from 27P stage2
14	27P2_A_Op	phase A Operation signal from27P stage2
15	27P2_B_Op	phase B Operation signal from27P stage2
16	27P2_C_Op	phase C Operation signal from27P stage2
17	27P2_Op	Operation signal from 27P stage2
18	27P2_Alm	Alarm signal from 27P stage2

3.13.2 Protection Principle

The three-phase undervoltage protection function can be enabled or disabled by setting the corresponding $27Px_Ena$ parameter values as "1" or "0".

The fundamental frequency component of the measured three phase voltages are compared phase-wise to the set value of the $27Px_Vol_Str$ setting. If the measured value is lower than the set value of the $27Px_Vol_Str$ setting, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases matches the set $27Px_Str_Ph_Num$ and no blocking signal input is activated, the phase selection logic activates the timer and the $27Px_Str_Ol_Str$ output and the corresponding output of the respective phases $(27Px_Str_A/B/C)$.

The $27Px_Vol_Opt$ setting is used for selecting phase-to-earth ($27Px_Vol_Opt = 0$) or phase-to-phase($27Px_Vol_Opt = 1$) voltages for protection.

27*Px_Vol_Str* is the preset value to check for the voltage

27*Px_Str_Ph_Num* shows the number of phases required for operate activation.

Blocking for low current levels is activated by setting. The desired blocking level can be adjusted

by the 27*Px_I_Blk_Ena*setting.

For example: If the measured current level decreases below the 0.05A, either the trip output of stage 1, or both the trip and the START outputs of stage 1, are blocked. Blocking for low voltage levels is activated by default.

Depending on the value of the set $27Px_0p_Curve_Type$, the time characteristics are selected according to DT ($27Px_0p_Curve_Type = 0$) or IDMT ($27Px_0p_Curve_Type = 1\sim5$). 27P supports the following IDMT operating curve type:

$$t(I) = \left(\frac{K}{1 - (\frac{U}{U_{set}})^{\alpha}} + C\right) \times T_{P}$$

IDMT Characteristic	К	α	С	Curve Type	Selection
IEC Normal inverse	0.14	0.02	0	1	•
IEC Very inverse	13.5	1.0	0	2	
IEC Extremely inverse	80.0	2.0	0	3	
IEC Long-time inverse	120.0	1.0	0	4	
IEC User inverse	К	α	С	5	

When the operation timer has reached the value set by $27Px_0p_T$ in the DT mode or the value set by the IDMT operate time curve, the $27Px_0p$ output is activated. The corresponding output for the respective phases ($27Px_0p_A/B/C$) is also activated. For the IDMT model, $27Px_Min_0p_T$ defines the minimum desired operate time for IDMT.

If a drop-off situation occurs, that is, a fault suddenly disappears before the operation delay is exceeded, the reset state is activated, the timer is reset and the $27Px_Str$ output is deactivated.

The binary input $27Px_Blk$ can be used to block the function. The activation of the $27Px_Blk$ input deactivates all outputs and resets the internal timers.

3.13.3 Logic Diagram

Figure 3.13-1Functional module diagram

3.13.4 Settings

Table 3.13-3Settings of Two stage Three-phase undervoltage protection

No.	Name	Values (Range)	Unit	Step	Default	Description
1	27P1_Vol_Str	0.00~160.00	V	0.01	40.00	Start value of undervoltage
2	27P1_Op_T	0.040~300.000	S	0.001	10.000	Operating time delay for definite time curve
3	27P1_Str_Ph_Num	1/2/3	-	-	3	Number of phases required for operate activation:1 for 1 phase, 2 for 2 phases, 3 for 3 phases

No.	Name	Values (Range)	Unit	Step	Default	Description
	27P1_Op_Curve_Ty	0.5			0	Selection of the type of time delay
4	ре	0~5	-	-	0	curve:0 for DT, 1~5 for IDMT
5	27P1_T_ Mult	0.050~200.000	-	0.001	10.000	Time multiplier in IEC curves
6	27P1_Min_Op_T	0.000~60.000	s	0.001	0.050	Minimum operate time delay for IDMT curves
7	27P1_Alpha	0.00~3.00	-	0.01	1.00	constant α of 27P Stage 1
8	27P1_C	0.000~60.000	-	0.001	0.000	constant C of 27P Stage 1
9	27P1_K	0.001~100.000	-	0.001	1.000	constant K of 27P Stage 1
10	27P1_Vol_Opt	0/1	-	1	0	Parameter to select phase or phase-to- phase voltages: 0 forphase voltages,1 forphase-to- phase voltages
11	27P1_VTS_Blk_Ena	0/1	-	1	0	undervoltage protection can be blocked due to VT circuit failure if the setting 27P1_VTS_Blk_Ena is set as "1".
12	27P1_I_Blk_Ena	0/1	-	1	0	undervoltage protection can be blocked due to CT circuit failure if the setting 27P1_I_BIk_Ena is set as "1".
13	27P1_Alm	0/1	-	1	0	Logic setting of nabling/disabling undervoltage protection for alarm purpose 0: disable 1: enable
14	27P1_Ena	0/1	-	1	1	Operation Off/On
15	27P2_Vol_Str	0.00~160.00	V	0.01	40.00	Start value of undervoltage
16	27P2_Op_T	0.040~300.000	s	0.001	10.000	Operating time delay for definite time curve
17	27P2_Str_Ph_Num	1/2/3	-	-	3	Number of phases required for operate activation:1 for 1 phase, 2 for 2 phases, 3 for 3 phases
18	27P2_Op_Curve_Ty pe	0~5	-	-	0	Selection of the type of time delay curve:0 for DT, 1~5 for IDMT
19	27P2_T_ Mult	0.050~200.000	-	0.001	10.000	Time multiplier in IEC curves
20	27P2_Min_Op_T	0.000~60.000	S	0.001	0.050	Minimum operate time delay for IDMT curves
21	27P2_Alpha	0.00~3.00	-	0.01	1.00	constant α of 27P Stage 2

No.	Name	Values (Range)	Unit	Step	Default	Description
22	2782 0	0.000 60.000		0.001	0.000	constant C of
22	2772_0	0.000~00.000	-	0.001	0.000	27P Stage 2
23	27D2 K	0.001-100.000		0.001	1 000	constant K of
23	27F2_K	0.001~100.000	-	0.001	1.000	27P Stage 2
						Parameter to select phase or
24	27P2 Val Opt	0/1		1	0	phase-to- phase voltages: 0
24	2772_00_000	0/1	-		0	forphase voltages,1 forphase-to-
						phase voltages
						undervoltage protection can be
25	27P2_VTS_Blk_Ena	0/1	-	1	0	blocked due to VT circuit failure if
25						the setting 27P2_VTS_Blk_Ena is
						set as "1".
						undervoltage protection can be
26	27P2 Blk Eng	27P2_I_BIk_Ena 0/1	-	1	0	blocked due to CT circuit failure if
20	Z7PZ_I_BIK_ENA					the setting 27P2_I_Blk_Ena is set
						as "1".
						Logic setting of nabling/disabling
						undervoltage protection for alarm
27	27P2_Alm	0/1	-	1	0	purpose
						0: disable
						1: enable
28	27P2_Ena	0/1	-	1	1	Operation Off/On

3.14 Overexcitation Protection (24)

3.14.1 Overview

In fact, the primary devices are stationary likes power transformer and some are rotating like generators or motors are very expensive and from the point of view of continuous power supply need to work properly. Over excitation disturb the proper operation of these primary devices and harm the internal structure and lead to major damages. The main function of overexcitation protection is to check the level of overexcitation of protected devices. If the relay detects the level of overexcitation protection is greater than the set value, the overexcitation protection will operate.

The operating range of power system fundamental frequency for 50Hz system is 45~55Hz and for 60Hz system is 55~65Hz.

Notice!

For the point of view of suitable operation of protection, overexcited protection can be configuring at any side of power transformer.

3.14.1.1 Function Block

3.14.1.2 Signals

Table 3.14-124 Input Signals

NO.	Signal	Description
1	UA,UB,UC	"UA,UB,UC" is the three phase group signal for voltage inputs
2	24_Blk	Block signal from 24

Table 3.14-224Output Signals

NO.	Signal	Description
1	24_DT_Str	Start signal from 24DT
2	24_DT_Op	Operation signal from 24DT
3	24_IDMT_Str	Start signal from 24DMT
4	24_IDMT _Op	Operation signal from 24DMT
5	24_IDMT _Alm	Alarm signal from24DMT

3.14.2 Protection Principle

Overexcitation protection consists of one stage definitetime protection and one stage inversetime protection, both of which can be used totrip the relevant breakeror alarm the users of the urgent situation. The RMS values of three phase voltages are used for protection calculation. Therefore, the calculation result will not be affected by the frequency fluctuation. Overall, the overexcitation inversetime curve is a sectional linear curve, which has high adaptability to all types of fault situations.

The overexcitation severity can be represented by the overexcitation value, the result of voltage dividing frequency. The overexcitation value can be calculated according to the following equation.

$$n = \frac{U_*}{f_*}$$

Where:

 U_* and f_* are per unit value of voltage and frequency respectively.

The base value for calculating per unit value of voltage is the secondary voltage proportions to the primary voltage of one side of transformer, and the base value for calculating per unit value of frequency is the measured frequency. Hence, if the transformer works under normal operation, n should be equal to 1.

This base voltage calculation is automatically excuted continuously and the users only need not enter the corresponding VT ratio when configuring the settings.

1,Definitetime operation criterion:

$$U_* / f_* > 24DT K$$

2,Inversetime operation criterion:

Inverse time characteristic is a curve that the overexcitation value inversely proportion to the time. The value reflects the heat accumulation and radiation exponentially increase as the overexcitation situation deteriorates. The overexcitation value is calculated according the above equation. After obtaining the overexcitation value, the time delay is obtained by matching with the sectional linear insertion.

Several groups of settings corresponding the pointson the curvecan be configured, which finally determines the inverse time operation characteristics. This protection can adapt to different overexcitation conditions of various transformers flexibly.

The belowfigure shows inverse ime characteristic of overexcitation protection.

Figure 3.14-1 Inverse Time Characteristic of Overexcitation Protection

The main harm of overexcitation to transformer is rapidly accumulated heat, so accumulation algorithmis adopted and the time delay can be calculated according to characteristic curve basing on the overexcitation value. When the accumulated time delay surpasses the operating time delay, inverse ime overexcitation protection operates.

Dissipating process is also applied to better protect the transformer. When the overexcitation valued ropsless than the minimum overexcitation multiple setting, the accumulated value decreases gradually instead of dropping to 0 directly. After the overexcitation protection operates to open the breaker and overexcitation condition disappears, the accumulated thermal decreases to 0 in 10s.

Overexcitation value is the accumulated value by adding theoverexcitation information at current instant and theoverexcitation information integrated over various time intervals from its beginning.

Inverse time characteristic curve can be demonstrated by modifying several overexcitation values ettings showed below. It also should be noticed that each setting of n and t should follow the below rules ($n1 \ge n2... \ge n9$; $t1 \le t2... \le t9$).

3.14.3 Logic Diagram

3.14.4 Settings

No.	ltem	Values (Range)	Unit	Step	Default	Description
1	24_DT_K	1.00~1.60	-	0.01	1.00	Multiple setting of stage 1 of definitetime
						overexcitation protection for trip purpose
2	24 DT Op T	0.1~99999.0	S	0.01	9999.0	Time delay setting of stage 1 of definitetime
			-			overexcitation protection for trip purpose
з	24 IDMT On K1	1.00~1.70	_	0.01	1 50	Multiple setting 1 of inversetime
Ŭ		1.00*1.70		0.01	.01 1.50	overexcitation protection: n1
4	24 IDMT 0- T4	0.4.0000.0		0.1	1.0	Time delay setting corresponding to multiple
4	24_IDIVI1_OP_11	0.1~99999.0	5	0.1	1.0	setting 1: t1
_		4 00 4 70		0.04	4.45	Multiple setting 2 of inversetime
5	24_IDMT_Op_K2	1.00~1.70	-	0.01	1.45	overexcitation protection: n2
						Time delay setting corresponding to multiple
6	24_IDM1_Op_12	0.1~9999.0	S	0.1	1 1.5	setting 2: t2
_						Multiple setting 3 of inversetime
7	24_IDM1_Op_K3	1.00~1.70	-	0.01	1.40	overexcitation protection: n3
						Time delay setting corresponding to multiple
8	24_IDM1_Op_13	0.1~99999.0	S	0.1	2.0	setting 3: t3
						Multiple setting 4 of inversetime
9	24_IDM1_Op_K4	1.00~1.70	-	0.01	1.35	overexcitation protection: n4
						Time delay setting corresponding to multiple
10	24_IDM1_Op_14	0.1~99999.0	S	0.1	2.5	setting 4: t4
		4 00 4 70			4.00	Multiple setting 5 of inversetime
11	24_IDM1_Op_K5	1.00~1.70	-	0.01)1 1.30	overexcitation protection: n5
40		0.4.0000.0		0.1	0.0	Time delay setting corresponding to multiple
12	24_IDMT_OP_15	0.1~9999.0	S	0.1	3.0	setting 5: t5
40		4 00 4 70		0.04	4.05	Multiple setting 6 of inversetime
13	24_IUMI1_UP_K6	1.00~1.70	-	0.01	1.25	overexcitation protection: n6

Table 3.14-3 Settings of Overexcitation Protection

No.	ltem	Values (Range)	Unit	Step	Default	Description
14	24_IDMT_Op _T6	0.1~9999.0	s	0.1	8.0	Time delay setting corresponding to multiple setting 6: t6
15	24_IDMT_Op _K7	1.00~1.70	-	0.01	1.20	Multiple setting 7 of inversetime overexcitation protection: n7
16	24_IDMT_Op _T7	0.1~9999.0	S	0.1	10.0	Time delay setting corresponding to multiple setting 7: t7
17	24_IDMT_Op _K8	1.00~1.70	-	0.01	1.15	Multiple setting 8 of inversetime overexcitation protection: n8
18	24_IDMT_Op _T8	0.1~9999.0	s	0.1	15.0	Time delay setting corresponding to multiple setting 8: t8
19	24_IDMT_Op _K9	1.00~1.70	-	0.01	1.10	Multiple setting 9 of inversetime overexcitation protection: n9
20	24_IDMT_Op _T9	0.1~99999.0	s	0.1	20.0	Time delay setting corresponding to multiple setting 9: t9
21	24_Up/Upp	0/1	-	1	0	Voltage option between phase voltage and phase-to-phase voltage for calculation of overexcitation protection 0: phase voltage 1: phase-to-phase voltage
22	24_DT_Ena	0/1	-	1	0	Logic setting of enabling/disabling stage 1 of definitetime overexcitation protection for trip purpose 0: disable 1: enable
23	24_IDMT_Trp_Ena	0/1	-	1	0	Logic setting of enabling/disabling inversetime overexcitation protection for trip purpose 0: disable 1: enable
24	24_IDMT_Alm_Ena	0/1	-	1	0	Logic setting of nabling/disabling inversetime overexcitation protection for alarm purpose 0: disable 1: enable

3.15 Overfrequency Protection(81O)

3.15.1 Overview

The main and important function of overfrequecy protection (81O) is to track or monitored the protected zone of electrical power system, where very high accurate and dependable power frequency detection is required. Because overfrequency cause many unwanted malfunction operations in power system likes:

- Disturbed the parallel operation of machines (generator or motor)
- Increase the size of conductor (skin effect)
- Increase the size of cores
- Disturbed the metering system capability

In order to prevent the electrical power system from above mentioned malfunctions, overfrequency protection (81O) provide 4 different stages with definite time delay to overcome all problems related to cause by overfrequency. The operation principle overfrequency protection (81O) is based on the following points:

- Abnormal range of frequency
- Line-sequence voltage

overfrequency protection (81O) is also have a blocking capability.

3.15.1.1 Function Block

3.15.1.2 Signals

Table 3.15-1810 Input Signals

NO.	Signal	Description
1	Ua,Ub,Uc	Three phase group signal for voltage inputs
2	f	Frequency of protected zone of electrical power system
3	8101_Blk	Block signal of 81O stage 1
4	81O2_Blk	Block signal of 81O stage 2
5	81O3_Blk	Block signal of 81O stage 3
6	81O4_Blk	Block signal of 81O stage 4

Table 3.15-2810 Output Signals

NO.	Signal	Description
1	81O1 _Str	Start signal from 81O stage 1
2	81O2 _Str	Start signal from 810 stage 2
3	81O3 _Str	Start signal from 810 stage 3
4	81O4 _Str	Start signal from 81O stage 4
5	81O1_Op	Operation signal from 81O stage 1
6	81O2_Op	Operation signal from 81O stage 2
7	81O3_Op	Operation signal from 81O stage 3
8	81O4_Op	Operation signal from 81O stage 4

3.15.2 Protection Principle

Overfrequency protection consists of the four stages (stage 1 to stage 4).All stages overfrequency protection with independent logic, frequency and time delay settings.

In order to prevent overfrequency protection from undesired operation, overfrequency protection will be blocked in some cases.

1) Blocking in undervoltage condition

If the minimalline voltage ULmin< $810x_UL_Blk$, the calculation of protection is not carried out and the output relay will be blocked.

2) Frequency abnormality condition

When f<(fn-10)Hz or f>(fn+10)Hz, overfrequency protection will be blocked.

Frequency criterion for each stage is:

 $f > 810x_f_Str$

3.15.3 Logic Diagram

Figure 3.15-1 Overfrequency Protection logic diagram

3.15.4 Settings

Table 3.15-3 Settings of Overfrequency Protection

No.	Name	Values (Range)	Unit	Step	Default	Description
1	8101 f Str	20.00~100.00	Нz	0.01	60.10	Frequency setting for stage 1 of
	0101_1_00	20.00~100.00	112	0.01	00.10	overfrequency protection
2	8101 On T	0.08~200.00	S	0.01	10.00	Time delay for stage 1 of
		0.00*200.00	0	0.01	10.00	overfrequency protection
3	8101 UL Bik	18 00~100 00	V	0.01	30.00	Voltage value of blocking
0		10.00*100.00	v	0.01	00.00	overfrequency protection
						Enabling/disabling rate of
						frequency change to block stage
4	81O1_Ena	0/1	-	1	0	1 of overfrequency protection
						0: disable
						1: enable
5	81O2 f Str	20.00~100.00	Hz	0.01	60.10	Frequency setting for stage 2 of
						overfrequency protection
6	81O2 Op T	0.08~200.00	s	0.01	10.00	Time delay for stage 2 of
						overfrequency protection
7	81O2 UL Blk	18.00~100.00	v	0.01	30.00	Voltage value of blocking
			-			overfrequency protection
						Enabling/disabling rate of
	81O2_Ena	0/1	-	1	0	frequency change to block stage
8						2 of overfrequency protection
						0: disable
						1: enable
9	81O3 f Str	20.00~100.00	Hz	0.01	60.10	Frequency setting for stage 3 of
						overfrequency protection
10	81O3_0p_T	0.08~200.00	S	0.01	10.00	Time delay for stage 3 of
						overfrequency protection
11	81O3_UL_Blk	18.00~100.00	V	0.01	30.00	Voltage value of blocking
						overfrequency protection
						Enabling/disabling rate of
		- 41			_	frequency change to block stage
12	81O3_Ena	0/1	-	1	0	3 of overfrequency protection
						0: disable
						1: enable
13	81O4_f_Str	20.00~100.00	Hz	0.01	60.10	Frequency setting for stage 4 of
						overfrequency protection
14	81O4_Op_T	0.08~200.00	s	0.01	10.00	Time delay for stage 4 of
						overtrequency protection
15	81O4_UL_Blk	18.00~100.00	V	0.01	30.00	Voltage value of blocking
						overfrequency protection

No.	Name	Values (Range)	Unit	Step	Default	Description
16	8104 Ena	0/1		1	0	Enabling/disabling rate of frequency change to block stage
10	0104_Lila	0/1		-	0	0: disable 1: enable

3.16 Underfrequency Protection(81U)

3.16.1 Overview

The main function of underfrequecy protection (81U) is to continuously track the frequency of protected zone of electrical power system, where very high accurate and dependable power frequency detection is required. Because underfrequency cause many unwanted malfunction operations in power system. In electrical power system there are many reason to cause the underfrequency likes one of them is active power is not fulfilling match with required power of system. The operation principle overfrequency protection (81U) is based on the following points:

- Abnormal range of frequency
- Line-sequence voltage

underfrequency protection (81U) is provide very accurate and reliable operation with four stage definite time delay and each stage have same setting of approach. underfrequency protection (81) is also have a blocking capability.

3.16.1.1 Function Block

3.16.1.2 Signals

Table 3.16-181U Input Signals

NO.	Signal	Description

NO.	Signal	Description			
1	Ua,Ub,Uc	Three phase group signal for voltage inputs			
2	f	Frequency of protected zone of electrical power system			
3	81U1_Blk	Block signal of 81U stage 1			
4	81U2_Blk	Block signal of 81U stage 2			
5	81U3_Blk	Block signal of 81U stage 3			
6	81U4_Blk	Block signal of 81U stage 4			

Table 3.16-281U Output Signals

NO.	Signal	Description			
1	81U1_Str	Start signal from 81U stage 1			
2	81U2_Str	Start signal from 81U stage 2			
3	81U3_Str	Start signal from 81U stage 3			
4	81U4_Str	Start signal from 81U stage 4			
5	81U1_Op	Operation signal from 81U stage 1			
6	81U2_Op	Operation signal from 81U stage 2			
7	81U3_Op	Operation signal from 81U stage 3			
8	81U4_Op	Operation signal from 81U stage 4			

3.16.2 Protection Principle

Underfrequency Protection consists of the four stages (stage 1 to stage 4).All stages underfrequency protection with independent logic, frequency and time delay settings.

In order to prevent underfrequency protection from undesired operation, underfrequency protectionwill be blocked in some cases.

1) Blocking in undervoltage condition

If the minimalline voltage ULmin< $81Ux_UL_Blk$, the calculation of protection is not carried out and the output relay will be blocked.

2) Frequency abnormality condition

When f<(fn-10)Hz or f>(fn+10)Hz, overfrequency protection will be blocked

Frequency criterion for each stage is:

$$f < 810x_f_Str$$

3.16.3 Logic Diagram

Figure 3.16-1 Logic diagram of underfrequency Protection

3.16.4 Settings

No.	Name	Values (Range)	Unit	Step	Default	Description
1	81U1_f_Str	20.00~100.00	Hz	0.01	59.90	Frequency setting for stage 1 of underfrequency protection
2	81U1_Op_T	0.08~200.00	S	0.01	10.00	Time delay for stage 1 of underfrequency protection
3	81U1_UL_Blk	0.00~100.00	V	0.1	30.00	Voltage value of blocking underfrequency protection
4	81U1_Ena	0/1	-	1	0	Enabling/disabling rate of frequency change to block stage 1 of underfrequency protection 0: disable 1: enable
5	81U2_f_Str	20.00~100.00	Hz	0.01	59.90	Frequency setting for stage 2 of underfrequency protection
6	81U2_Op_T	0.08~200.00	S	0.01	10.00	Time delay for stage 2 of underfrequency protection
7	81U2_UL_Blk	0.00~100.00	V	0.1	30.00	Voltage value of blocking underfrequency protection
8	81U2_Ena	0/1	-	1	0	Enabling/disabling rate of frequency change to block stage 2 of underfrequency protection 0: disable 1: enable
9	81U3_f_Str	20.00~100.00	Hz	0.01	59.90	Frequency setting for stage 3 of

Table 3.16-3 Settings of Underfrequency Protection

No.	Name	Values (Range)	Unit	Step	Default	Description
						underfrequency protection
	81U3_Op_T	0.08~200.00	S	0.01	10.00	Time delay for stage 3 of
10						underfrequency protection
11		0.00.100.00	V	0.1	20.00	Voltage value of blocking
11	0103_0L_BIK	0.00~100.00	v	0.1	30.00	underfrequency protection
		0/1	-	1	0	Enabling/disabling rate of
	81U3_Ena					frequency change to block stage
12						3 of underfrequency protection
						0: disable
						1: enable
13	8111/1 f Str	20.00-100.00	Ц7	0.01	50.00	Frequency setting for stage 4 of
15	0104_1_50	20.00~100.00	112	0.01	59.90	underfrequency protection
4.4	81U4_Op_T	0.08~200.00	S	0.01	10.00	Time delay for stage 4 of
14						underfrequency protection
15	81U4_UL_Blk	0.00~100.00	V	0.1	30.00	Voltage value of blocking
15						underfrequency protection
	81U4_Ena	IU4_Ena 0/1	-	1	0	Enabling/disabling rate of
16						frequency change to block stage
						4 of underfrequency protection
						0: disable
						1: enable

3.17 Rate-of-change of frequency protection (81R)

3.17.1 Overview

The chief important function of Rate-of-change of frequency protection (81R) is to continuously check the rate of change of power system fundamental frequency. Because the rate of change of frequency is great impact on electrical power system. The power grid supply frequency is not constant every time its change time to time and load to load, if any situation the variation of power grid frequency is greater than allowable limits of normal operation it's cause many unwanted fault in power system likes.

- Disturbed the parallel operation of machines (generator or motor)
- Disturbed the metering system capability
- Harm the system

Rate-of-change of frequency protection (81R) is provide very accurate and reliable operation with one stage definite time delay .

3.17.1.1 Function Block

3.17.1.2 Signals

Table 3.17-181R Input Signals

NO.	Signal	Description
1	Ua,Ub,Uc	Three phase voltage inputs.
2	f	Frequency of protected zone of electrical power system
3	81R_Blk	Block signal of 81R

Table 3.17-281R Output Signals

NO.	Signal	Description		
1	81R _Str	Start signal from 81R		
2	81R _Op	Operation signal from 81R		

3.17.2 Protection Principle

The rate of change of the frequency of the positive sequence voltage is calculated from phase-to-phase or phase-to-earth voltages and compared to the set $81R_Dfdt_Str$. If the measured frequency rate of change is higher than the set $81R_Dfdt_Str$ and no block signal is activated, the operate timer and $81R_Str$ signal are activated. However, if the voltage magnitude is below the $81R_UL_Blk$ set value or the difference between the measured frequency and the rated frequency exceeds 10 Hz, the operate timer and $81R_Str$ signal are deactivated.

 $81R_Dfdt_Str$ is the frequency gradient start value. When the setting $81R_FrUp_Ena = 1$, it means a positive change in frequency. Otherwise, it means a negative change in frequency.

NOTICE!

81*R_Vol_Blk* is the setting level compared to the physically connected voltages. For example, if phase-to-phase voltages are physically connected (phase-to-earth voltages virtual), the 10% setting results in ten percent of the normal phase-to-phase voltage. If phase-to-earth voltages are connected (phase-to-phase voltages virtual), the 10% setting results in 17 percent of the normal phase-to-earth voltage. This is assuming the base voltage is set to be the normal/nominal phase-to-phase voltage.

> Timer

Once activated, the $81R_Str$ outputactivates. The time characteristic is according to DT. When the operation timer has reached the value set by $81R_Op_T$, the $81R_Op$ output is activated. If the frequency rate of change condition disappears before the module operates, the operation resets with a set time delay of $81R_Reset_T$.

The activation of the $81R_Blk$ input resets the timer and deactivates the $81R_Op$ and $81R_Str$ outputs.

 $81R_0p_T$ is the operation delay time setting of the 81R.

 $81R_Reset_T$ is the reset delay time setting of the 81R.

3.17.3 Logic Diagram

Figure 3.17-1Rate-of-change of frequency protection logic diagram

3.17.4 Settings

No.	Name	Range	Unit	Step	Default	Description
1	81R_Dfdt_Str	0.50 - 10.00	Hz/s	0.01	0.50	Frequency gradient start value
						Negative/positive change in
2	81R_FrUp_Ena	0/1	-	1	0	frequency:0 for negative, 1 for
						positive
3	81R_Op_T	0.12 - 60.00	S	0.01	1.00	Operate time delay
4	81R_Reset_T	0.00 - 60.00	S	0.01	0.20	Time delay for reset
5	81R_UL_Blk	18.00 - 100.00	V	0.01	30.00	Voltage value of blocking 81R
6	81R_Ena	0/1	-	1	0	Operation disable/enable

Table 3.17-3 Settings of Rate-of-change of frequency Protection

3.18 Reactor differential protection (87R)

3.18.1 Overview

In electrical power system or electrical power industry, power reactor is the one of the important primary equipment. For this main point of view, the protection of power reactor is very important task. If some kind of trouble or fault situation happen in the protected zone of the power reactor, then need to clear this trouble or fault as soon as possible. Reactor differential protection (87R) is specially designed for such kind of trouble or fault situation to protect reactor from maximum cause
of injuries or harm and operate the protection as quick as possible.

Reactor differential protection (87R) have two dependable operating function of element likes biased differential element and instantaneous differential element.

- 1) Biased differential element is operation based on with three characteristics slope.
- 2) Instantaneous differential element increase the operating speed of protection during internal fault of reactor without three characteristics slope of biased differential element.
- 3) Some other important and superior special functions of 87R protection are:
 - Meticulousphase compensation IED calculation criteria.
 - Accurate and fast fault tracking capability.

Above mentioned these two element of reactor differential protection function are highly proved to sense quickly any abnormal situation in protected zone of reactor and in case of any abnormalty is detected then very fast trip command is issued.

Notice!

Point of view of user's project and real time experience, some of the pretection function of reactor differential protection (87R) are enable or disable according to the customer's or user's demand of situation.

3.18.1.1 Function Block

3.18.1.2 Signals

Table 3.18-1 87R Input Signals

NO.	Signal	Description
3	lda, ldb, ldc	Three phase differential current of 87R
4	87R_Blk	Block signal of 87R

Table 3.18-2 87R Output Signals

NO.	Signal	Description
29	87R _Str	Start signal ofdifferential from 87R
30	87R _Str_A	Start_A signal of differential from 87R
31	87R_Str_B	Start_B signal of differential from 87R
32	87R _Str_C	Start_C signal of differential from 87R
33	87R_ Op	Operation signal ofdifferential from 87R
34	87R_Inst_Str	Start signal of instantaneous differential from 87R
35	87R_Inst_Str_A	Start_A signal of instantaneous differential from 87R
36	87R_Inst_Str_B	Start_B signal of instantaneous differential from 87R
37	87R_Inst_Str_C	Start_C signal of instantaneous differential from 87R
38	87R_Inst_Op	Operation signal of instantaneous differential from 87R
39	87R_CTFail	CT failsignal of 87R

3.18.2 Protection Principle

3.18.2.1 Phase Overcurrent Element

The device can regulate the difference in transformation ratio between CTs at each side of reactor. Each side is provided with a CT transformation ratio regulation coefficient which is multiplied by current quantity collected by the device to get the quantity after regulation of CT transformation ratio. By simply entering relevant parameters of reactor (refer to the table of settings), it's possible to automatically obtain regulation coefficient of CT at each side without the need for external connection with auxiliary CT. Such type of regulation is more reliable when compared with regulation performed using hardware circuit.

3.18.2.2 Magnitude Compensation

> Rated primary current at each side of Reactor

$$I_{1e} = \frac{S_n}{\sqrt{3}U_{1n}}$$

Where:

 S_n means maximum rated capacity of reactor nameplate, and U_{1n} represents rated primary

CYG

voltage at calculated side of reactor.

CT transformation ratio at each side of reactor

$$K_{TA} = \frac{I_{1n}}{I_{2n}}$$

Where, I_{2n} rated secondary current of CT is 5A or 1A; I_{1n} "primary side of CT" is dependent on corresponding settings of system parameters.

Rated secondary current at each side of reactor

$$I_{2e} = \frac{I_{1e}}{K_{TA}}$$

CT balance coefficient at each side of differential protection

With HV side as reference, the balance coefficient at HV side is fixedly set to 1.

Balance coefficient at LV side (switch CT):

$$K_{phL-ZC} = \frac{K_{TAL}}{K_{TAH}}$$

In the formula, K_{TAL} means CT transformation ratio of CB at LV side.

3.18.2.3 Fault detector based on biased differential current

The fault detector can initiate biased differential element, and its operation equation is shownas below.

Idmax>0.9*87R_Cur_Str

Where:

Idmax is the maximum value of three phase differential currents.

3.18.2.4 Fault detector based on instantaneous differential current

The fault detector can initiate instantaneous differential element, and its operation equation is shownas below.

Idmax>0.9*87R_Cur_Inst

Where:

Idmax is the maximum value of three phase differential currents.

The equation of calculating differential current is:

$$\begin{cases} I_{dA} = |I'_{HA} + I'_{LA}| \\ I_{dB} = |I'_{HB} + I'_{LB}| \\ I_{dC} = |I'_{HC} + I'_{LC}| \end{cases}$$

The equation of calculating restraint current is:

$$\begin{cases} I_{rA} = \frac{1}{2} \times \left(I'_{HA} - I'_{LA}\right) \\ I_{rB} = \frac{1}{2} \times \left(I'_{HB} - I'_{LB}\right) \\ I_{rC} = \frac{1}{2} \times \left(I'_{HC} - I'_{LC}\right) \end{cases}$$

Where:

IdA, IdB, IdC are differential currents.

IrA, IrB, IrC are restraint currents.

3.18.2.6 Biased Low Stage

$$\begin{split} &I_{d} > K_{1} \times I_{r} + I_{Str} \qquad (I_{r} < K_{nee1}) \\ &I_{d} > K_{2} \times (I_{r} - K_{nee1}) + K_{1} \times K_{nee1} + I_{Str} \qquad (K_{nee1} \le I_{r} < K_{nee2}) \\ &I_{d} > K_{3} \times (I_{r} - K_{nee2}) + K_{2} \times (K_{nee2} - K_{nee1}) + K_{1} \times K_{nee1} + I_{Str} \qquad (I_{r} \ge K_{nee2}) \end{split}$$

Where:

 I_{d} and I_{r} are respectively the differential current and the restraint current.

 I_{Str} is the start setting of biased differential protection (i.e., 87R_Cur_Str).

"Knee1" and "Knee2" are respectively current settings of knee point 1 and knee point 2, the corresponding set value: 87R_Cur_K1 and 87R_Cur_K2).

"K1", "K2" and "K3" are three slopes of biased differential protection, the corresponding set value: 87R_Slope1, 87R_Slope2, 87R_Slope3.

Operation characteristic of sensitive biased differential element is shown below.

Figure 3.17-1 Operation characteristic of differential protection

3.18.2.7 Instantaneous High Stage

Instantaneous high stage for reactor is to accelerate the operation speed for reactor's internal fault. The operation of the instantaneous high stage is not biasedand has no blocking element. Instantaneoushigh stage shall operate to clear the fault when any phase differential current is higher than its setting. Its operation criterion is:

Idmax> 87R_Cur_Inst

Where:

Idmax is the maximum value of three phase differential currents.

3.18.2.8 Differential CT circuit abnormality

If the differential current in any phase is continually greater than the alarm setting 87R_Cur_Alm over 10s, the differential current abnormality alarm will be issued, but this alarm will not block differential protection.

Figure 3.17-3Differential CT Circuit Abnormality

3.18.2.9 Differential CT circuitfailure

This is a differential protection CT circuit failure criterion.

First of all, the possibility of concurrence of multi-side CT line-break and fault is not taken into consideration. Under this premise, it's possible to distinguish between CT circuit failure and fault based on the following characteristic. In case of CT circuit failure, it's necessary to specifically

identify circuit failure phase.

Single-phase or two-phase CTcircuit failure:

- a) $\min\{I_a, I_b, I_c\} < 0.5I_e$
- b) $\max\{I_a, I_b, I_c\} < 1.1I_e$
- c) Self side: $3I_0 > 0.3I_e$
- d) Other side: $3I_0 < 0.2I_e$
- e) Other side:Imax> 0.04

Blocking of biased differential protection by CT circuit failure follows the following principle:

- When "CTS_Blk_Ena" is set to "1", biased differential protection would be blocked in case of CT circuit failure (as for longitudinal percentage differential protection and split-phase percentage differential protection, differential protection would be blocked when differential current is less than 1.2le and would not when more than 1.2le; with respect to cell differential protection, differential protection would be blocked when differential and would not when more than 1.2le. Here, le means rated secondary current at HV side of reactor, while ILe represents rated secondary current at LV side of reactor).
- When "CTS_Blk_Ena" is set to "0", biased differential protection would not be blocked in case of CT circuit failure.

Where:

"CTS_Blk_Ena" is effective for Biased low stage.

It should be noted that CT circuit failure induced blocking is principally designed to prevent malfunction of differential protection caused by CT circuit failure and follows the following principles:

Firstly, concurrence of multi-side CT circuit failureis not taken into account; secondly, differential protection trip is allowed in case of concurrence of failure and CT circuit failure; thirdly, relevant protection should be blocked when fault occurs after CT circuit failure; fourthly, protection shall operate if CT circuit failure occurs after the occurrence of fault.

3.18.3 Logic Diagram

Figure 3.18-4 Logic diagram of 87R_Inst protection

Figure 3.18-5 Logic diagram of 87R protection

Where:

Idmax is the maximum value of three phase differential currents.

"87T_CTFail" means that the flag of CT circuit failure.

3.18.4 Settings

|--|

No.	Name	Range	Unit	Step	Default	Description
1	07D Cur Str	0.05.20.00	IE	0.04	0.40	Pickup setting of biased
1	o/R_Cul_Su	0.05~20.00		0.01	0.40	differential element
2	97D Cur Inst	0.05.20.00	15	0.01	6.00	Current setting of instantaneous
2	87R_Cur_Inst	0.05~20.00	IE	0.01	6.00	differential element
	87R_K_Hm2 0.05~0.50 - 0.01 0.15	0.05.0.50		0.01	0.45	Coefficient of second harmonics
3		for inrush current detection				
4	87R_Cur_Alm	87R_Cur_Alm 0.05~20.00	IE	0.01	1.00	Current setting of differential
4						circuit abnormality alarm
_		0.05.00.00	ı.	0.04	0.01 1.00	Current setting of knee point 1 for
5		0.05~20.00		0.01		transformer differential protection

No.	Name	Range	Unit	Step	Default	Description	
6	87R_Cur_K2	0.05~20.00	IE	0.01	6.00	Current setting of knee point 2 for transformer differential protection	
_						Slope 1 of biased differential	
	87 K _Slope1	0~0.90	-	0.01	0.00	element	
0	97P Slope2	0,0.00		0.01	0.50	Slope 2 of biased differential	
0	ork_Slopez	0~0.90	-	0.01	0.50	element	
0	87P Slope3	0-0.90	_	0.01	0.75	Slope 3 of biased differential	
3		0~0.90	-	0.01	0.75	element	
						Option of inrush current	
10	87R Opt Iprush	0~3	_	1	0	discrimination principle:	
10	orn_opt_initian	0~3	_	I	U	0: Without Inrush CurrentBlock	
						1: Harmonic principle	
						Logic setting of	
	87R _Ena	0,1	-	1	0	enabling/disabling conventional	
11						biased differential element	
						0: disable	
						1: enable	
	87R_Inst_Ena	87R_Inst_Ena 0,1			0	Logic setting of	
12						enabling/disabling instantaneous	
			-	1		differential element	
						0: disable	
						1: enable	
						Logic setting of	
	87R_Alm_Ena	87R_Alm_Ena 0,1 -	-	1	0	enabling/disabling differential	
13						Alam element	
						0: disable	
						1: enable	
						Logic setting of	
	87R_CTS_Blk_Ena					enabling/disabling block biased	
		37R_CTS_Blk_Ena 0,1		1	0	differential element during CT	
14						circuit failure	
						0: disable	
							1: enable

3.19 Reactor zero-sequence differential protection (87N)

3.19.1 Overview

3.19.1.1 Function Block

3.19.1.2 Signals

Table 3.19-1 87N Input Signals

NO.	Signal	Description
5	I0d	zero-sequence differential current of 87N
6	87N_Blk	Block signal of 87N

Table 3.19-2 87N Output Signals

NO.	Signal	Description
40	87N _Str	Start signal ofdifferential from 87N
41	87N_ Op	Operation signal of differential from 87N
42	87N_Inst_Str	Start signal of instantaneous differential from 87N
43	87N_ Inst_Op	Operation signal of instantaneous differential from 87N
44	87N_Alm	Alarm signal of differential 87N
45	87N_CTFail	CT failsignal of 87N

3.19.2 Protection Principle

3.19.2.1 Amplitude Compensation

CT balance coefficient at each side of differential protection

With HV side as reference, the balance coefficient at HV side is fixedly set to 1.

Balance coefficient at LV side (switch CT):

$$K_{phL-LX} = \frac{K_{TAL}}{K_{TAH}}$$

3.19.2.2 Fault detector based on biased differential current

The fault detector can initiate biased differential element, and its operation equation is shownas below.

Where:

I0d is the value of three phase zero-sequencedifferential current.

3.19.2.3 Fault detector based on instantaneous differential current

The fault detector can initiate instantaneous differential element, and its operation equation is shownas below.

Where:

I0d is the value of zero-sequence differential current.

3.19.2.4 Calculate Differential and Restraint Current

Zero-sequence differential current and restraint current are calculated as the following formulas :

$$I_{0d} = |I'_{h0} + I'_{l0}|$$

$$I_{0r} = \frac{1}{2} * |I_{h0}' - I_{l0}'|$$

Where:

I0d is the zero-sequence differential current;

IOr is the zero-sequence restraint current;

3.19.2.5 Operation Criterion

The operation criteria of 87N protection are as follows:

$$I_{0d} > K_1 \times I_{0r} + I_{Str} \qquad (I_r < K_{nee1})$$

$$I_{0d} > K_2 \times (I_{0r} - K_{nee1}) + K_1 \times K_{nee1} + I_{Str} \qquad (K_{nee1} \le I_r)$$

Where:

 I_{0d} and I_{0r} are respectively the differential current and the restraint current.

*I*_{Str} is the start setting of biased differential protection (i.e., 87N_Cur_Str).

"Knee1" is respectively current settings of knee point 1, the corresponding set value: 87R_Cur_K1).

"K1" and "K2" are three slopes of biased differential protection, the corresponding set value: 87R_Slope1, 87R_Slope2.

3.19.2.6 Operation Characteristic

Figure 3.19-1 Operation characteristic of 87N

Where:

I0d is the differential current; I0r is the restraint current; 87N_Cur_Str is the start of differential current.

3.19.2.7 CT Transient Characteristic Difference Detection

$$3I_0 > B_0 \times I_1$$

Where:

 $3I_0$ is the zero-sequence current at a side.

 I_1 is its corresponding positive-sequence current.

 B_0 is a proportional constant and the value is 0.2.

3.19.2.8 CT Circuit Failure

Please refer to Section 3.2.2.12 for details.

3.19.3 Logic Diagram

Figure 3.19-2 Logic diagram of 87N_Inst protection

Figure 3.19-3 Logic diagram of 87N protection

Where:

I0d is the value of zero-sequence differential currents.

"87N_CTFail" means that the flag of CT circuit failure.

3.19.4 Settings

Table 3.19-2 Settings of Reactor differential protection

No.	Name	Range	Unit	Step	Default	Description
1	87N_Cur_Str	0.05~20.00	IE	0.01	0.40	Pickup setting of biased
			ΙC			differential element
0	07NL Curr Inst	0.05, 20.00		0.01	6.00	Current setting of instantaneous
2	o/in_Cul_inst	0.05~20.00		0.01	6.00	differential element
3	87N_Cur_Alm	0.05~20.00	IE	0.01	1.00	Current setting of differential

CYG	

No.	Name	Range	Unit	Step	Default	Description
						circuit abnormality alarm
6	07NL Our 1/4	0.05.20.00		0.01	1.00	Current setting of knee point 1 for
0		0.05~20.00		0.01	1.00	transformer differential protection
0	97N Slopot	0.0.00		0.01	0.00	Slope 1 of biased differential
0		0~0.90	-	0.01	0.00	element
0	87N Slope2	0.0.00		0.01	0.50	Slope 2 of biased differential
9	orin_Slopez	0~0.90	-	0.01	0.50	element
						Logic setting of
						enabling/disabling conventional
12	87N _Ena	0,1	-	1	0	biased differential element
					1	0: disable
						1: enable
	87N_Inst_Ena	0,1				Logic setting of
			-	1	0	enabling/disabling instantaneous
13						differential element
						0: disable
						1: enable
	87N_Alm_Ena					Logic setting of
		87N_Alm_Ena 0,1	-	1	0	enabling/disabling differential
14						Alam element
						0: disable
						1: enable
	87N_CTS_Blk_Ena					Logic setting of
						enabling/disabling block biased
10		0,1		1	0	differential element during CT
10				'	U	circuit failure
						0: disable
						1: enable

3.20 Reactor interturn Protection (21IT)

3.20.1 Overview

The inter-turn short circuit of the reactor is a common form of internal fault. When the number of short-circuit turns is small, the three-phase current imbalance caused by one-phase short-circuit is likely to be small, which is difficult to be detected by relay protection. For this purpose, high-sensitivity, reliable and reliable inter-turn short-circuit protection(21IT) must be considered for high-voltage shunt reactors. The device uses a compensated absolute value comparison type zero sequence directional element and a negative sequence direction, a zero sequence impedance element and an interturn short circuit protection starting element. It can improve the sensitivity of the protection between reactors and ensure that it is not accidentally caused by external faults and any abnormal operating conditions.

3.20.1.1 Function Block

3.20.1.2 Signals

Table 3.20-121IT Input Signals

NO.	Signal	Description
1	la,lb,lc	Three phase current of 21IT
2	Ua,Ub,Uc	Three phase voltage of 21IT
3	21IT_Blk	Block signal of 21IT

Table 3.20-221IT Output Signals

NO.	Signal	Description
1	21IT_I0_Str	Zero-sequence current start signal from 21IT
2	21IT_I0DLT_Str	Break current start signal from 21IT
3	21IT_PHASE_A_Str	Impedance Astart signal of 21IT
4	21IT_PHASE_B_Str	Impedance B start signal of 21IT
5	21IT_PHASE_C_Str	Impedance C start signal of 21IT
6	21IT_Str	Start signal of 21IT
7	21IT_Op	Operation signal of 21IT

3.20.2 Protection Principle

3.20.2.1 Zero-sequence current start

 $3I_0>I_{0set}$

Where:

 $3I_0$ is the Zero-sequence current of high side.

 $I_{0set} = 0.2 * I_e$.

3.20.2.2 Break current start

$$\Delta 3I_0 = \left| |3i_0(t) - 3i_0(t-T)| - |3i_0(t-T) - 3i_0(t-2T)| \right| > I_{0set}$$

Where:

 $I_{0set} = 0.3 * I_e$.

3.20.2.3 Phase Impedancestart

$$\begin{aligned} Z_{\varphi} &= \left| \frac{U'_{\varphi} - (I'_{ha} + I'_{hb} + I'_{hc}) * ZL_{s0}}{I'_{h\varphi}} \right| < 0.92 * ZL_{1} \\ ZL_{s0} &= \frac{Z_{1n} * K_{AT}}{VT_{1n} * 10} \\ ZL_{1} &= \frac{U_{n} * 1000}{VT_{1n} * 10 * I_{e} * \sqrt{3}} \end{aligned}$$

Where:

 U'_{φ} is the phase voltage of high side.

 I_{φ}' is the phase current of high side.

 I'_{ha} , I'_{hb} , I'_{hc} is the three phase current of high side.

 ZL_{s0} is the Zero-sequence Impedance of the neutral point reactor .

 ZL_1 is the secondary Impedance of the main reactor .

3.20.2.4 Zero-sequence direction components

$$|U'_0 - I'_0 * 0.9ZL_0| > |U'_0|$$
$$ZL_0 = ZL_1 + 3 * ZL_{s0}$$

Where:

 U'_0 is the Zero-sequence voltage of high side.

 ZL_0 is the Zero-sequence Impedance of the main reactor .

3.20.2.5 Negative-sequence direction components

$$|U_2'-I_2'*0.9ZL_1|>|U_2'|$$

Where:

 ZL_1 is the secondary Impedance of the main reactor .

3.20.3 Logic Diagram

Figure 3.20-1 Logic diagram of 21IT protection

3.20.4 Settings

Table 3.20-3 Settings of Reactor interturn Protection

No.	Name	Values (Range)	Unit	Step	Default	Description
						Logic setting of
						enabling/disabling zero /
1	211T 102 Epg	0/1		1	0	negative sequence
I	2111_102_Ena	0/1	-	1 0	0	directional element
						0: disable
						1: enable
2						Logic setting of
		0/1				enabling/disabling phase
			-	1	0	impedance element
						0: disable

No.	Name	Values (Range)	Unit	Step	Default	Description
						1: enable
						Logic setting of
3		0/1		1	0	enabling/disabling 21IT
	2111 _Ella	0/1	-	I		0: disable
						1: enable

3.21 Out-of-Step Protection 780

3.21.1 Overview

When the power system loses synchronism, out-of-step protection 78O can automatically disconnect the power plant and the associated load from the power system to prevent damage.

78O use voltage angle criteria and it can adapt to a variety range of power grid structures and operation mode. 78O has the following characteristics:

- Using the criterion of voltage angle, 78O can accurately identifies the system oscillation. The function can operate reliably and correctly if the oscillation period is less than 160ms.
- 78O is not affected by the fault, for example, three-phase symmetrical fault and its recovery, converted fault and power swing which does not lead to system out-of-step.
- When the system is in open-phase operation mode, 78O will not operate even if the system is out-of-step. When the system returns to full-phase operation mode and is still in out-of-step condition, 78O will operate.
- The 78O function can identify the system power angle and avoid disconnecting the circuit breaker when the angle difference is around 180 °.

3.21.1.1 Function Block

3.21.1.2 Signals

Table 3.21-1 780 Input Signals

NO.	Signal	Description			
1	Ua,Ub,Uc	Three-phase voltage input			
2	la,lb,lc	Three-phase current input			
3	780_Blk	Blocking signal of 78O			

Table 3.21-2 780 Output Signals

NO.	Signal	Description
1	780_Str	Start signal from 78O
2	78O_Op	Operation signal from 78O

3.21.2 Protection Principle

3.21.2.1 Start of the Function

By calculating the voltage at oscillation center of the transmission line, the function can detect whether the system is in power swing or symmetry fault condition.

$$\begin{cases} -0.7Un < U_1 \cos(\varphi) < 0.7Un \\ 3U_1 > 18V \land 3U_2 < 8V \land 3U_0 < 8V \\ 3I_0 < 300A \land I_1 > 500A \end{cases}$$

Where:

Unis the rated voltage.

 U_1 is positive-sequence voltage.

U₂is negative-sequence voltage.

U₀is zero-sequence voltage.

I₁is positive-sequence current.

 φ is the angle difference between positive-sequence voltage and current.

The function will operate when the criterion is met and last for at least 25ms.

3.21.2.2 Power Swing Detection

The function detects the out-of-step oscillation according to the change of the voltage at oscillation center, and simultaneously evaluates the amplitude and period of oscillation and the power angle to decide whether to operate.

Calculation of the voltage of power swing center can be done through the following fomula:

$$U_{\cos} = U_1 \cos(\varphi + \delta)$$

Where:

 ϕ is the angle difference between positive-sequence voltage and positive-sequence current.

 δ is the line positive-sequence impedance angle, set by the setting LinAng.

U_{cos}have the following waveforms (converted to per unit value):

Figure 3.21.1 Voltage at Accelerate Side

Figure 3.21.2 Voltage at Decelerate Side

The two voltage waveforms above satisfy the following equations:

$$U_{\cos_accel}(t) = \cos\left(\frac{\pi}{T_0}t\right)$$
$$U_{\cos_decel}(t) = -\cos\left(\frac{\pi}{T_0}t\right)$$

Where:

 T_0 is the oscillation period.

Divide the waveform of U_{cos} into 6 areas within one oscillation period:

Figure 3.21.3 Phase Division of Vector Diagram

Figure 3.21.4 Division of Waveform

Where in area $0:|U_{cos}| > 0.966$

Area 1: $0.707 < U_{cos} < 0.966$

Area 2:0.259 < $U_{\rm cos} < 0.707$

Area 3:-0.259 < U_{cos} < 0.259

Area 4: $-0.707 < U_{cos} < -0.259$

Area 5:-0.966 < $U_{\rm cos} <$ -0.707

 U_{cos} falls into each area for an equal time $T_0/6$ in one oscillation period.

In the accelerate side, $\,U_{cos} \mbox{swing}$ across the areas in the following order:

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 0$$

In the decelerate side, U_{cos} swing across the areas in the following order:

 $0 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$

The 78O function records the history of areas that U_{cos} once passed and compare it with the above order. If the order is the same, the function's internal flag Pswing_Cond will be set to 1.

High speed tripping:

In some situations, 78O is required to operate as soon as possible when a loss of synchronization is detected, for which the function provides a high-speed tripping criterion:

The function simply detects if U_{cos} have crossed through area 3 in the above order, for example:

 $5 \rightarrow 4 \rightarrow 3 \rightarrow 2$

And the absolute value of U_{cos} is greater than 10V.

If the two conditions are met, the function's internal flag Pswing_Inst_Cond will be set to 1.

Notice that high speed trip will only be enable if the setting 78O_InstTrp_Ena is set to 1.

3.21.2.3 Power Swing Center Locating and Direction Determination

Power swing center location determination criterion:

When U_{cos} falls into area 3 and the positive-sequence voltage is below the threshold voltage setting 78O_Op_LowVol for 10ms, the function considered the swing center to be somewhere within the protection zone and the function's internal flag 78O_Pswing_Loc will be set to 1.

Power swing center direction determination criterion:

When the absolute value of U_{cos} is less than 0.1Un, the power swing center is considered to be in the forward direction if the phase angle $30^{\circ} < \text{Angle}(U_1/I_1) < 150^{\circ}$, and reverse direction if $-150^{\circ} < \text{Angle}(U_1/I_1) < -30^{\circ}$.

Notice that direction criterion will be automatically satisfied if the direction determination is not enable. And if the setting 780_Dir_Ena is set to 1, the direction criterion will also be satisfied if 780_Dir_Mod is set to 0.

3.21.2.4 Tripping Angle Determination

When all the other operation conditions are met, if U_{cos} falls into area 3 while the phase angle $150^{\circ} < Angle(U_1/I_1) < 210^{\circ}$, tripping signal will be blocked until U_{cos} cross through area 3.

3.21.2.5 Power Swing Cycle Counting

The threshold setting of oscillation cycle number 78O_Op_Pswing_Num is an important parameter in the function. 78O will need more than the setting number of swing cycles counting to operate. 78O_Op_Pswing_Num should be set to 1 if fast disconnecting is required; 78O_Op_Pswing_Num should be set to 3 or 4 in order to cooperate with the out-of-step protection of adjacent lines, which ensures that 78O will not operate before the disconnection of the adjacent line; After the out-of-step oscillation, it is hoped that the out-of-step system can be pulled back into synchronization, in this case, 78O_Op_Pswing_Num should be set to 5 to 10 which can leave enough time for the system recovery. In short, the choice of 78O_Op_Pswing_Num should be based on the actual situation of the system and the cooperation with other protection device.

3.21.2.6 Abnormal Condition Blocking of the Function

780 will be blocked in the following conditions:

- When three-phase fault occurs in the power system.
- When the zero-sequence or negative-sequence voltage or current is in abnormal condition.
- When U_{cos}stays in any area for more than 1.5 seconds.

Notice that all the internal flag will be reset if abnormal condition is detected and the oscillation cycle counting will be set to 0 too.

3.21.3 Logic

Figure 3.21.5 780 Start

Figure 3.21.6 780 Direction element

Figure 3.21.7 780 Operation

Figure 3.21.8 780 Ucos Area Detection

3.21.4 Settings

Table 3.21-3 780 Settings

NO	Name	Range	Unit	Step	Description
					Enabling/disabling of out-of-step
	700 5				protection:
1	780_Ena	0 or 1			0: disable
					1: enable
	2 78O_InstTrp_Ena 0 or 1				Enabling/disabling high speed trip of
		0 or 1			out-of-speed protection
2					0: disable
					1: enable
					Enabling/disabling direction
3	780_Dir_Ena	0 or 1			determination of out-of-step
					protection:

NO	Name	Range	Unit	Step	Description
					0: disable
					1: enable
4	78O_Op_LowVol	0.00~1.00	Un	0.01	Low voltage threshold of out-of-step protection
5	78O_Op_Pswing_Num	1~15		1	Threshold number of power swing cycle counting
6	78O_Dir_Mod	0, 1, 2		1	Direction option for out-of-step protection: 0: Non-Directional 1: Forward 2: Reverse

3.22 Mechanical Relay Protection (MR)

3.22.1 Overview

The main transformer protection can provide mechanical protection as the main protection of transformer fault. The mechanical protection includes mechanical protection after delay and mechanical protection without delay.

3.22.1.1 Function Block

Figure 3.22-1 Delay Of Mechanical Relay

Figure 3.22-2 No Delay Of Mechanical Relay

3.22.1.2 Signals

Table 3.22-1 MR Input Signals

NO.	Signal	Description
1	BI01	Binary Input 01 Of Mechanical Relay
2	BI02	Binary Input 02 Of Mechanical Relay
3	BI03	Binary Input 03 Of Mechanical Relay
4	BI04	Binary Input 04 Of Mechanical Relay

Table 3.22-2 MROutput Signals

NO.	Signal	Description
1	MRD_Str_BO01	Delay Mechanical Relay Start Signal Of BO01
2	MRD_Str_BO02	Delay Mechanical Relay Start Signal Of BO02
3	MRD_Str_BO03	Delay Mechanical Relay Start Signal Of BO03
4	MRD_Str_BO04	Delay Mechanical Relay Start Signal Of BO04
5	MRD_Op_BO01	Delay Mechanical Relay Operation Signal Of BO01
6	MRD_Op_BO02	Delay Mechanical Relay Operation Signal Of BO02
7	MRD_Op_BO03	Delay Mechanical Relay Operation Signal Of BO03
8	MRD_Op_BO04	Delay Mechanical Relay Operation Signal Of BO04
9	MRND_Op_BO01	No Delay Mechanical Relay Operation Signal Of BO01
10	MRND_Op_BO02	No Delay Mechanical Relay Operation Signal Of BO02
11	MRND_Op_BO03	No Delay Mechanical Relay Operation Signal Of BO03
12	MRND_Op_BO04	No Delay Mechanical Relay Operation Signal Of BO04

3.22.2 Protection Principle

3.22.2.1 Delay Mechanical Protection

Delay mechanical protection, with adjustable delay function, trip through the delay operate outlet.

Figure 3.22-3 Logic diagram of MRD Protection

3.22.2.2 Non Delay Mechanical Protection

No delay mechanical protection, direct exit, no delay function, not through the CPU, is completely hardware loop.

Figure 3.22-4 Logic diagram of MRND Protection

3.22.3 Settings

Table 3.22-1 Settings of Reactor interturn Protection

No.	Name	Values (Range)	Unit	Step	Default	Description
1	MRD_BI01Op_T	0.00~99.99	s	0.01	99.99	Operating time delay for Delay Mechanical Relay
2	MRD_BI02Op_T	0.00~99.99	S	0.01	99.99	Operating time delay for Delay Mechanical Relay
3	MRD_BI03Op_T	0.00~99.99	s	0.01	99.99	Operating time delay for Delay Mechanical Relay
4	MRD_BI04Op_T	0.00~99.99	s	0.01	99.99	Operating time delay for Delay Mechanical Relay
5	MRD_BI01_Ena	0/1	-	1	0	Logic setting of enabling/disabling Delay Mechanical Relay 0: disable 1: enable
6	MRD_BI02_Ena	0/1	-	1	0	Logic setting of enabling/disabling Delay Mechanical Relay 0: disable 1: enable

No.	Name	Values (Range)	Unit	Step	Default	Description
						Logic setting of
						enabling/disabling Delay
7	MRD_BI03_Ena	0/1	-	1	0	Mechanical Relay
						0: disable
						Description Logic setting of enabling/disabling Delay Mechanical Relay 0: disable 1: enable Logic setting of enabling/disabling Delay Mechanical Relay 0: disable 1: enable
8						Logic setting of
						enabling/disabling Delay
	MRD_BI04_Ena	0/1	-	1	0	Mechanical Relay
					1 0 Mechanical R 0: disable	0: disable
						1: enable

4 Supervision

4.1 Overview

Though the protection system is in non-operating state under normal conditions, it is waiting for a power system fault to occur at any time and must operate for the fault without fail.

When the equipment is in energizing process, the equipment needs to be checked to ensure there are no errors. Therefore, the automatic supervision function, which checks the health of the protection system during startup and normal operation procedure, plays an important role.

The numerical relay based on the microprocessor operations has the capability for implementing this automatic supervision function of the protection system.

In case a fatal fault is detected during automatic supervision, the equipment will be blocked out. It means that this relay is out of service. Therefore you must re-energize the relay or even replace a module to make this relay back into service.

4.2 Supervision Alarm and Block

The relay device has powerful real-time self-check capability. The device will automatically check its own software and hardware running state during the process of operation. If there is any abnormal situation, the abnormal information will be displayed on the LCD, and the corresponding indicator and signal relay will issue prompt. Besides, these abnormal self-check and alarm signal can be uploaded to the SCADA through the IEC 61850 or IEC 60870-103 communication protocol.

Self-check scope of the device is as follows:

- 1. Self-check about the hardware:
 - Alarm signal of analog quantity circuit self-check
 - Alarm signal of BI circuit self-check
 - Alarm signal of BO circuit self-check

- Alarm signal of storage self-check
- 2. Self-check about the software and configuration
 - Alarm signal of software running state self-check
 - Alarm signal of configuration self-check
 - Alarm signal of internal communication self-check
- 3. Self-check about the external communication
 - Alarm signal of external communication self-check

If the relay device is in abnormal status, alarm signal will be issued. Some alarm signals will block the protection function, while some will not. The detailed information is shown as the following table.

Alarm Signal Name	Description
Kernel Comm Abn	Some abnormalityhappen to the internal communication.
Databus Comm Intr	Databus communication is interrupted.
Databus Data Abn	Some abnormalityhappen to the databus.
LVDSIO Input Err	LVDSIO fails to Read BI.
LVDSBus SelfChk Abn	LVDS databus is self-detected as abnormal.
RAM Scan Err	Some abnormality are found when the RAM is under scan.
Sys Const SelfChk Abn	The system constant is self-detected as abnormal.
SelfChk Comp Port Err	The communication port isself-detected as abnormal.
SelfChk Comp Cfg Err	The communication configuration isself-detected as abnormal.
Setting SelfChk Err	The setting CRC code isself-detected as abnormal.
Soft Sw SelfChk Err	The soft switch CRC code isself-detected as abnormal.
BO Cfg SelfChk Err	The KO configuration file CRC code isself-detected as abnormal.
BO Cfg CRC Err	The KO configuration file CRC code is unmatched.
Para SelfChk Err	The parameter CRC code isself-detected as abnormal.
Prot Comp RAM Scan Err	Some abnormality are found when the BO RAM is under scan.

Table 4.2-1 Trip Blocking Signal

Table 4.2-2 Supervision Alarm Signal

Alarm Signal Name	Description
Databus LongTime Losing Syn	The databus loses synchronization for a long time.
Databus Wrong Syn Alarm	Some abnormality happens to the databus synchronization.
A/D Sampling Err	A/Dmodule sampling is abnormal.
IRIG-B Syn Abn	IRIG-B synchronization is abnormal.
Mana Bus Comm Intr	Management databus communication is interrupted.
Set CRC Err	The setting CRC code is unmatched.
Soft Sw CRC Err	The soft switch CRC code is unmatched.
Para CRC Err	The parameter CRC code is unmatched.
Main Cfg Check Abn	Themain configuration file isabnormal.
Cfg File Check Abn	The configuration file isabnormal.
Comp Cfg Check Err	Thecommunication configuration file isself-detected as abnormal.

Alarm Signal Name	Description
WaveRcd Cfg File Abn	Thedisturbance configuration file isabnormal.
WaveRcd File Abn	The disturbance file isabnormal.

4.3 Current circuit supervision(CTS)

4.3.1 Overview

The main purpose of Current circuit supervision (CTS) is to monitor the protected electrical network by the help of instrument transformer (CT). This is a backup function for CT circuit failure. If CT balance coefficient at one side is relatively little, the different current resulting from CT circuit failure is very small. Therefore, the CT circuit failure alarm can not be issued. The function is used to prompt the operator to check and confirm whether the CT is normal or not.

The operation principle criteria of Current circuit supervision CT's based on the following points:

- Three phase zero-sequance current
- Three phase zero-sequence voltage

In addition, the CTS can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

4.3.1.1 Function Block

4.3.1.2 Signals

Table 4.3-1	CTS	Input	Signals
10010 110 1			eignaie

NO.	Signal	Description
7	3U0	Residual voltage from the three-phase voltage inputs
8	310	Residual current from the three-phase current inputs

NO.	Signal	Description
9	CTS_Blk	Block signal of CTS

Table 4.3-2 CTS Output Signals

NO.	Signal	Description
9	CTS _Op	Operation signal from CTS

4.3.2 Logic Diagram

Figure 4.3-1 CTS criterion logic diagram

4.3.3 Protection Principle

This is a backup function of CT circuit failure criterion.

Each side of the device is furnished with CT circuit failure alarm element

To prevent incorrect tripping of zero-sequence overcurrent protection caused by CT circuit failure or anomaly, the device is provided with CT circuit failure judgment element using the following criterion:

$$\begin{cases} 3I_0 > I_{0CT} \\ 3U_0 < U_{0CT} \end{cases}$$

Where:

 I_{0TA} and U_{0TA} are respectively internal threshold value of zero-sequence current and zero-sequence voltage for CT circuit failure judgment element.

CT circuit failure will be deemed to have occurred once the situation that meets above-noted criterion lasting for 10s.

4.4 Reactor Current circuit supervision(CTS)

4.4.1 Overview

The main purpose of Current circuit supervision (CTS) is to monitor the protected electrical network by the help of instrument transformer (CT). This is a backup function for CT circuit failure. The function is used to prompt the operator to check and confirm whether the CT is normal or not.

4.4.1.1 Function Block

4.4.1.2 Signals

Table 4.4-1 CTS Input Signals

NO.	Signal	Description
10	Ua,Ub,Uc	three-phase voltage inputs
11	la,lb,lc	three-phase current inputs
12	CTS_Blk	Block signal of CTS

Table 4.4-2 CTS Output Signals

NO.	Signal	Description
10	CTS _Op	Operation signal from CTS

4.4.2 Logic Diagram

4.4.3 Protection Principle

4.5 Fuse failure supervision(VTS)

4.5.1 Overview

The main and important function of Fuse failure supervision (VTS) is to continuously supervised the protected electrical network by the help of instrument transformer (VT) and to ensure the stability of accurate operation. If any kind of trouble situation happened in the following circuits between instrument transformer (VT) and intelligence electronic device (IED), cause many un-legal operation of protection function are follows:

- Overcurrent protection with voltage controlled element
- Synchronization and many other protections

The operation principle criteria of fuse failure supervision VT's based on the following points:

- Negative-sequence voltage is greater than 8V
- Each phase voltage is less than 30V

In addition, the VTS can be configured on the high-voltage side, middle-voltage side or low-voltage side of the transformer as a backup protection for each side.

4.5.1.1 Function Block

4.5.1.2 Signals

Table 4.5-1 VTS Input Signals

NO.	Signal	Description
1	U3P	Three phase group signal for voltage inputs
2	U2	Negative voltage inputs
3	VTS_Blk	Block signal of VTS

Table 4.5-2 VTS Output Signals

NO.	Signal	Description
1	VTS_Op	Operation signal from VTS

4.5.2 Logic Diagram

Figure 4.5-1VTS criterion logic diagram

4.5.3 Protection Principle

Each side of the device is furnished with VT line-break alarm element

In case start-up element fails to activate voltage quantity related protection, VT line-break alarm signal would be given with a delay of 8s once any of the following conditions is satisfied:

- Voltage at each phase is less than 30V;
- Negative-sequence voltage is greater than 8V.

When voltage switch-on hard strap of some certain side is disabled, VT line-break judgment function of this side is automatically lifted.

4.6 Reactor Fuse failure supervision(VTS)

4.6.1 Overview

The main and important function of Fuse failure supervision (VTS) is to continuously supervised the protected electrical network by the help of instrument transformer (VT) and to ensure the stability of accurate operation. If any kind of trouble situation happened in the following circuits between instrument transformer (VT) and intelligence electronic device (IED), cause many un-legal operation of protection function are follows:

- Overcurrent protection with voltage controlled element
- Synchronization and many other protections

The operation principle criteria of fuse failure supervision VT's based on the following points:

- Negative-sequence voltage is greater than 8V and Negative-sequence current is less then 0.1le.
- Each phase voltage is less than 30V and Three-Phase current is between 0.06In and 1.2Ie.

4.6.1.1 Function Block

4.6.1.2 Signals

Table 4.6-1 VTS Input Signals

NO.	Signal	Description
1	Ua,Ub,Uc	Three phase group signal for voltage inputs
2	la,lb,lc	Three phase group signal for current inputs
3	VTS_Blk	Block signal of VTS

Table 4.6-2 VTS Output Signals

NO.	Signal	Description
1	VTS_Op	Operation signal from VTS

4.6.2 Logic Diagram

Figure 4.6-1VTS criterion logic diagram

4.6.3 Protection Principle

Each side of the device is furnished with VT line-break alarm element
In case start-up element fails to activate voltage quantity related protection, VT line-break alarm signal would be given with a delay of 8s once any of the following conditions is satisfied:

- Voltage at each phase is less than 30V and three phase current greater than 0.06In and less than 1.2Ie;
- Negative-sequence voltage is greater than 8V and Negative-sequence current less than 0.1le.

When voltage switch-on hard strap of some certain side is disabled, VT line-break judgment function of this side is automatically lifted.

Besides the protection and supervision functions, the relay provides some other auxiliary functions, such as protection and metering measurement quantities sampling, remote control, BI signaling, event recording and fault & disturbance recording etc. All these sub-functions are integrated components to fulfill the protection and control functions of the device.

5.2 Measurement

The general measurement quantities include both directly sampling and calculated quantities. These quantities are generally used for protection analyzing and metering calculation. All these quantities can be displayed in the local HMI or transmitted to the PRS IED Studio, SCADA or dispatching center through network communication.

Through the PRS IED Studio configuration tool, the measurement channels in the transformer module can be flexibly connected to any measurement quantity according to the designing requirements.

5.2.1 Protection Sampling

The protection sampling rate s 40 points per cycle. Different protection logics use different measurement quantities, including the RMS value, the phase angle, the frequency, the harmonic content, the sequence components and so on. All these protection sampled values are displayed in HMI with 0.5s updateing rate.

5.2.2 Metering

The metering rate is 40 points per cycle. Different functions, such as controlling, monitoring and metering, use different measurement quantities, including the RMS value, the phase angle, the frequency, the harmonic content, the sequence components and so on. All these metering values are displayed in HMI with 0.5s updateing rate.

5.3 Apparatus Control

The apparatus control is a combination of functions which continuously superviseand control the circuit breakers, switches and earthing switches within a bay. The selection and operation command to control an apparatus is given after the evaluation of other functions' conditions such as interlocking, synchrocheck, operator place selection and the external or internal blockings.

The commands to an apparatus can be initiated from the local self-customized BI, thestation HMI or the dispatching center. The local control self-customized BIcan be configured on the PRS IED Studio. The control operation can be started by the activation of the corresponding BI signal. The remote control command can be remotely dispatched through the network communication like IEC61850 or DNP.Before executing a remote control command, it is necessary to turn the Local/Remote control switch to the "Remote" position.

The output relays in the BO module can be configured as output contacts so as tocloseor trip the apparatus.Each control output can be control with an interlock module (which can be configured through the PRS IED Studio) if the corresponding interlock logic setting (see Section 7.4.3) is set to activation.

Figure 5.3-1 Demonstration Diagram of TheControl Function

5.4 Signaling

This relay has some programmable binary inputs which are used to monitor the contact positions of the corresponding bay, or be used in protection logics or for releasing or blocking the relevant protective element, or be used in supervision logics calculation for supervision alarm elements.

The binary inputs can be configured according to the engineering demands through the PRS IED Studio configuration tool auxiliary software.

The binary input state change confirmation time of each binary input is configurable according to practical application through the PRS IED Studio configuration tool auxiliary software, and the

default binary input state change confirmation time of the binary inputs is 10ms.

5.5 Event Recording

This relay supports the event recording functions which can record all the events happened in this relay. So it is very convenient for the user to view the history records.

The following event information can be recorded.

- 64 latest protection operation reports
- 1024 latest supervision alarm records
- 1024 latest control operation records
- 1024 latest user operation records
- 1024 latest reports of time tagged sequence of event (SOE)

5.6 Fault and Disturbance Recording

This relay provides the fault and disturbance recording facility for recording the sampled values of the fault and disturbance wave when a fault is occurred in the power system. The 64 latest fault and disturbance records can be recorded in this relay, and each wave record includes up to 10000 fault sampled points (40 sampled points per cycle).

The current and voltage sampled values, the binary input signals and the protection operation signals are contained in the fault and disturbance wave record, and the analog value sampling rate is 40 points per cycle. The format of the wave complies with the "COMTRADE" standard.

Each waveform includes the wave recording data both before and after the fault. Each trigger element operation will extend the wave recording time, until the appointed time delay is over after the trigger element restores, or until the maximum number of wave recording points is reached.

CYG

6 IED Hardware

6.1 Overview

The modular design structure of this relay enables a qualified commissioning technician to easily check and locate the damaged hardware modular, so as to eliminate the fault in the very first time. The hinged front panel allows easy access to the HMI modules and the back-plugging design makes it easy to upgrade, maintain or replace any module.

There are several types of hardware modules in this relay, which play different roles in the practical application. The specific modules can be configurated flexibly according to the practical engineering demands.

The overall hardware designing frame of this relay is shown as below.

Figure 6.1.1 Hardware Frame of This Relay

The following figures show the front panel and the rear panel of 1/2 19" case and 1/1 19" case.

O Haatiy O Alarm	CYG TRATT
	° 🖵

Figure 6.1.2 Front Panel of 1/2 19" Case

Figure 6.1.3 Front Panel of 1/1 19" Case

RIG-B RX
 ⊘ 17 ⊘ 18 0 19
 17 18 19
 ⊘ 17 ⊘ 18 ⊘ 19

Figure 6.1.4Rear Panel of 1/2 19" Case

	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
CPU	AD	AD	AI	AI	AI		MR	MR	MR	BI	BI	BO	BO	BO	PWR
							0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 13 0 13 0 14 0 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 12 0 13 0 14 0 0 14 0 0 0 14 0 0 0 16 0	0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 13 0 14 0 16 0 16	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0	2 01 2 02 2 03 2 05 2 05 2 06 2 08 2 09 2 11 2 13 2 13 2 14 2 14 2 14 2 14 2 16	∅ 0 0 ∅ 0 02 ∅ 0 02 ∅ 0 05 ∅ 0 05 ∅ 0 05 ∅ 0 11 ∅ 11 0 ∅ 0 13 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0 14 ∅ 0	∅ 0 0 ∅ 0 02 ∅ 0 02 ∅ 0 05 ∅ 0 05 ∅ 0 05 ∅ 0 06 ∅ 0 01 ∅ 0 01 ∅ 0 11 ∅ 0 13 ∅ 0 14 ∅ ∅ 16 ∅ ∅ 16 ∅ 0 14 ∅ ∅ 16 ∅ ∅ 16	∅ 0 0 ∅ 0 02 ∅ 0 05 ∅ 0 05 ∅ 0 05 ∅ 0 05 ∅ 0 05 ∅ 0 05 ∅ 0 11 ∅ 13 0 13 ∅ 0 13 0 ∅ 0 14 0 ∅ 0 14 0 ∅ 0 15 0 ∅ 0 14 0 ∅ 0 15 0	
							Ø 0 17 Ø 18 Ø 20 Ø 22 Ø 23 Ø 22 Ø 25 Ø 26 Ø 27 Ø 28 Ø 29 Ø 29 Ø 29 Ø 29 Ø 29 Ø 29 Ø 30 Ø Ø Ø 32	Image: Constraint of the system 10 Image: Constraint of the system 10 Image: Constraint of the system 20 Image: Constraint of the system 20 <td< th=""><th>Ø 17 Ø 18 Ø 20 Ø 20 Ø 22 Ø 23 Ø 24 Ø 25 Ø 26 Ø 27 Ø 28 Ø 28 Ø 29 Ø 28 Ø 28 Ø 28 Ø 29 Ø 20 Ø 28 Ø 30 Ø 31 Ø 2 Ø 2</th><th>2 0 17 0 18 0 19 0 20 0 20 0 21 0 22 0 23 0 25 0 27 0 28 0 28 0 28 0 28 0 28 0 28 0 29 0 20 0 20 0 20 0 28 0 29 0 20 0 20 0 20 0 20 0 30 0 32 0 32 0 32 0 32 0 32</th><th>∅ 0 17 0 18 0 18 0 20 0 20 0 22 0 23 0 22 0 23 0 27 0 28 0 28 0 20 0 20 0 20 0 20 0 20 0 20 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>2 0 17 0 1 16 0 1 0 19 0 2 20 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 30 0 0 3 0 0 0 3 0 0 0 3 0</th><th>Image: Constraint of the second sec</th><th>Image: Constraint of the second sec</th><th>0 17 0 0</th></td<>	Ø 17 Ø 18 Ø 20 Ø 20 Ø 22 Ø 23 Ø 24 Ø 25 Ø 26 Ø 27 Ø 28 Ø 28 Ø 29 Ø 28 Ø 28 Ø 28 Ø 29 Ø 20 Ø 28 Ø 30 Ø 31 Ø 2 Ø 2	2 0 17 0 18 0 19 0 20 0 20 0 21 0 22 0 23 0 25 0 27 0 28 0 28 0 28 0 28 0 28 0 28 0 29 0 20 0 20 0 20 0 28 0 29 0 20 0 20 0 20 0 20 0 30 0 32 0 32 0 32 0 32 0 32	∅ 0 17 0 18 0 18 0 20 0 20 0 22 0 23 0 22 0 23 0 27 0 28 0 28 0 20 0 20 0 20 0 20 0 20 0 20 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 17 0 1 16 0 1 0 19 0 2 20 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 30 0 0 3 0 0 0 3 0 0 0 3 0	Image: Constraint of the second sec	Image: Constraint of the second sec	0 17 0 0
0	0	0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	0	0

Figure 6.1.5Real Panel of 1/1 19" Case

NOTICE!

The hardware module configuration in the above figure is only for demonstrating one kind of typical configuration. Most oftenly, the configuration have to be modified in most of the project. The hardware module configuration of a practical engineering should be modified based on the practical designing requirement.

6.2 Hardware Module

The PRS-778 is comprised of randomly coordinated modules, except that a few particular modules, eg., PWR module, CPU module and HMI module, cannot be replaced in the whole device. The other modules, including TF(current or voltgage transformer) module and IO (input and output) module, can be flexibly configured and then placed in the remained slots. The TF module includes AC current transformer, AC voltage transformer, DC current transformer and etc. The IO (input and output) module includes binary input, tripping output, signal output and etc.

No.	ID	Module Description	Remark
1	SR7910(1/2 19")		
	SR7900(1/1 19")	Human machine interface module (HMI module)	standard
2	SR7601	Power supply module (PWR module)	standard

Table 6-1 Module Configuration

No.	ID	Module Description	Remark
3	SR7260	Protection calculation module (CPU module)	standard
4	SR7270/SR7271	AD conversion(AD module)	standard
5	SR7100/SR7178	Analog input module (Al module)	standard
6	SR7330	Binary input module (BI module)	standard
7	SR7300	Binary output module (BO module)	standard
8	SR7302	Binary output module (BO module)	standard
9	SR7720	Mechanical relay module (MR module)	option

6.3 Human Machine Interface Module

The human machine interface (HMI) module is installed behind the front panel of this device. It contains an LCD screen to modify the protection settings and system parameters and display informations of this device, including the analogue quantities, the running status and event lists.

The menus are showed as tree sturcture, which facilitates the users to enter any specific menu. After entering the menu, the big LCD show all the relevant information in one screen, making it easier to get all the information.

6.4 Power Supply Module

The power supply module contains a small voltage converter with enough electrical insulation between the converter and the input/output terminals. A wide range input voltage is provided due to the sophisticated circuit design. The the output voltage from the voltage converter are continuously monitored to ensure the stability and safety.

The power supply module provides 13 binary outputs, some dry contacts, which conduct the signal functions showing the operating conditions (device error) or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable.

Except for the Dev_Err Cls and Dev_Err Open output contacts (fixed as indication output contacts), all the other binary inputs or outputs can be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and PWR module.

The frame of all the power supply module terminal are shown below.

PWR						
01	POW(+)	BO06 Open	17			
02	POW(-)	BO07 Common	18			
03	Dev_Err Common	BO07 Open	19			
04	Dev_Err Cls	BO07 Cls	20			
05	Dev_Err Open	BO08 Common	21			
06	BO01 Common	BO08 Open	22			
07	BO01 Open	BO08 Cls	23			
08	BO02 Common	BO09 Common	24			
09	BO02 Open	BO09 Open	25			
10	BO03 Common	BO09 Cls	26			
11	BO03 Open	BO10 Common	27			
12	BO04 Common	BO10 Open	28			
13	BO04 Open	BO10 Cls	29			
14	BO05 Common	BO11 Common	30			
15	BO05 Open	BO11 Open	31			
16	BO06 Common	BO11 Cls	32			

Figure 6.4.1 Frame of the Power Supply Module Terminals

The specific terminal definition of the connector is described as below.

Table 6-2 Terminal Definition and Description of PWR Module

Name	Description
POW+	Positive input of power supply for the device.
POW-	Negative input of power supply for the device.
Dev_Err Common	Device abnormality alarm common terminal.
Dev_Err Cls	Device abnormality alarm normal close terminal.
Dev_Err Open	Device abnormality alarm normal open terminal.
BO01	The No.1 programmable signal, tripping and closing binary output.
BOUT	Specially used for high current interruption.
BO03	The No.2 programmable signal, tripping and closing binary output.
B002	Specially used for high current interruption.
BO03	The No.3 programmable signal, tripping and closing binary output.
6003	Specially used for high current interruption.

Name	Description					
PO04	The No.4 programmable signal, tripping and closing binary output.					
BO04	Specially used for high current interruption.					
DOGE	The No.5 programmable signal, tripping and closing binary output.					
B005	Specially used for high current interruption.					
ROOS	The No.6 programmable signal, tripping and closing binary output.					
BOUG	Specially used for high current interruption.					
BO07	The No.7 programmable signal, tripping and blocking binary output.					
BO08	The No.8 programmable signal, tripping and blocking binary output.					
BO09	The No.9 programmable signal, tripping and blocking binary output.					
BO10	The No.10 programmable signal, tripping and blocking binary output.					
BO11	The No.11 programmable signal, tripping and blocking binary output.					

6.5 Main CPU Module

The main CPU module, containing powerful microchip processors and some necessary electronic accessories, is the core part of this relay. This powerful processor excecute all the functions of the relay and conduct the commands, including the protection logics, the control function and the internal and external information interfacing functions.

A high-accuracy crystal oscillator is installed on the module as well, ensuring the relay to operate exactly based on the accurate current time.

The main functions of the main CPU module includes as below:

• Sampling information processing

The values of each sampling point will be stored and then sent to different processing module for different function, including display, calculation, communication.

The values of each binary IO contacts will also be stored and then sent to different processing module for different function, including display, calculation, communication.

• Protection, measuring and metering quantities calculation

The CPU module can calculate all the relevant quantities (zero sequence current and voltage, negative sequence current and voltage, harmonic quantities of up to 13th) on the basis of the directly sampling quantities (phase-to-earth voltages and currents, phase-to-phase voltages and currents) and binary inputs. After the calculation, all the quantities are sent to the protection function module or control module to decide whether the relevant dry contacts trip or close.

Communication management

The CPU module can effectively excecute all communication procedures parallelly and reliably interface coded messages through the selected communication interfaces. These interfaces are usually used to communicate with a SCADA or a Station Gateway throuth a switcher. The CPU module also responsible for information exchanging with the HMI module. If any monitoring conditon changes or any event occurs (SOE, protection tripping event,

device abnormality), this module will send out the relevant event information to all relevant receivers, so as to ensure a first time alarm to notice the users.

• Auxiliary calculations

Besides all the quantities metioned above, the CPU module can also calculate the metering values, such as active power, reactive power and power factor, etc., to provide overall monitoring information. All these quantities can be sent to a SCADA or a Station Gateway throuth a switcher.

• Time Synchronization

The module provides an interface to receive time synchronized signals from external clock synchronization source. This module also has a local crystal oscillator to maintain the internal time accuracy when outside synchronization source breaks down. The synchronization mode includes PPS (pulse per second) modeand IRIG-B mode. Basing on the outside timing message (from SCADA or Station Gateway) or the PPS signal or the IRIG-B signal, this module can adjust its time within the timing accuracy.

The frame of the CPU module terminalis described as below.

Figure 6.5.1 Frame of Main CPU Module

6.6 AD module

The module consists of a 16-bit high-accuracy AD converter which converters the sampling analog quantities to digital signals channel by channel. After the quick converter, all the digital signals are transmitted to microchip processors for latter application.

6.7 Transformer Module

The transformer module can decrease the high input analog values to relevant low output analog values as to the small transformer ratio, acting as an effective isolation between the relay and the power system. The low output analog values, within the range of the AD module after the conversion, are sent to the AD module for further processing. A low pass filter circuit is used to reduce the noise of each analog channel.

The frame of three transformer modules of different specifications are shown below. The first transformer module consists of 6 voltage channels and 6 current channels. The second one consists of 4 voltage channels and 8 current channels. The third one consists of 12 current channels. The current terminal will be automatically short circuited when it is pluged out.

TF1: 6U+6I						TF2:	4U+8I			TF3	: 121	
01	Ua	Ub	02		01	Ua	Ub	02	01	l1	I1'	02
03	Uc	Un	04		03	Uc	Un	04	03	12	12'	04
05	U1	U1n	06		05	U1	U1n	06	05	13	13'	06
07	U2	U2n	08		07			08	07	14	14'	08
09	U3	U3n	10		09			10	09	15	15'	10
11	la	la'	12		11	la	la'	12	11	16	I6'	12
13	lb	lb'	14		13	lb	lb'	14	13	17	17'	14
15	lc	lc'	16		15	lc	lc'	16	15	18	18'	16
17	lon	lon'	18		17	In	ln'	18	17	19	19'	18
19	11	I1'	20		19	11	I1'	20	19	l10	I10'	20
21	12	12'	22		21	12	12'	22	21	l11	l11'	22
23			24		23	13	13'	24	23	112	l12'	24
25			26		25	14	14'	26	25			26

Figure 6.7.1Transformer Module of Three Different Specifications

DANGER!

NEVER allow the secondary side of the current transformer (CT) to be opened while the primary apparatus is energized. The opened CT secondary circuit will produce a extremely high voltage and high heat. Although the current terminal will be automatically short circuited when it is pluged out, the safety precaution should be obeyed in order to prevent severe personal injury, person death or considerable equipment damage.

The terminal definition of the connector is described in the below diagram.

Name	Description
Ua	The three voltage input channels with inner star connection (Y) for
Ub	protection and metering.

Name	Description						
Uc							
Un							
U1	The phase voltage inputs of line1 for protection and metaring						
U1n	The phase voltage inputs of line i for protection and metering.						
U2							
U2n	The phase voltage inputs of linez for protection and metering.						
U3	The phase voltage inputs of line? for protection and matering						
U3n	The phase voltage inputs of lines for protection and metering.						
la							
la'							
lb	The three phase surrent inputs						
lb'	The three phase current inputs .						
lc							
lc'							
lo							
lon'	The zero sequence current inputs .						
l1	The phase surrent inputs of line1						
l1'	The phase current inputs of line 1.						
12	The phase surrent inputs of line?						
12'							

Table 6-4 Terminal Definition and Description of TF Module 2

Name	Description
Ua	
Ub	The three voltage input channels with inner star connection (Y) for
Uc	protection and metering.
Un	
U1	The phase voltage inputs of lines for protection and matering
U1n	The phase voltage inputs of line i for protection and metering.
la	
la'	The three phase current inputs .
lb	
lb'	
lc	
lc'	
In	The zero sequence current inputs .
ln'	
l1	The phase current inputs of line1.
I1'	
12	The phase current inputs of line2.
12'	
13	The phase current inputs of line3.

Name	Description
13'	
14	The phase current inputs of line4.
14'	

Table 6-5 Terminal Definition and Description of TF Module 3

Name	Description	
l1		
l1'	The phase current inputs of line1.	
12	The phase surrent inputs of line?	
12'	The phase current inputs of line2.	
13		
13'	The phase current inputs of lines.	
14	The phase surrent inputs of line4	
14'	The phase current inputs of line4.	
15		
15'	The phase current inputs of lines.	
16		
l6'	The phase current inputs of lineo.	
17	The phase surrent inputs of line7	
17'	The phase current inputs of line7.	
18		
18'	i ne phase current inputs of lines.	
19	The phase surrent inputs of line0	
19'	i ne phase current inputs of line9.	
I10		
l10'	i ne phase current inputs of line10.	
I11	The phase surrent inputs of line11	
I11'	i ne phase current inputs of line11.	
l12		
l12'		

6.8 Binary Input Module

The BI module contains 18 binary inputs, the optical isolated input terminals, which can perform different monitoring functions, such as detecting the breaker and switch positions of the corresponding bay. All the BI terminals can be used as general purpose binary inputs or special purpose (protection function or control function) binary inputs. For example, the general purpose binary inputs can be used to indicate the status (0 for normal condition and 1 for abnormal condition) of a certain apparatus. For another example, the special purpose binary inputs can be used to acting as the blocking or start signal for a certain protection function.

All the binary inputs can be visually and flexibly configured through the PRS IED Studio

configuration tool, which determine what information do they transmit between the CPU module and BI module.

The frame of the BI module terminal is described as below.

INPUT			
01	BI01+	BI10+	17
02	BI02+	BI11+	18
03	BI01~02 Common-	BI10~11 Common-	19
04	BI03+	BI12+	20
05	BI04+	BI13+	21
06	BI03~04 Common-	BI12~13 Common-	22
07	BI05+	BI14+	23
08	BI05-	BI14-	24
09	BI06+	BI15+	25
10	BI06-	BI15-	26
11	BI07+	BI16+	27
12	BI07-	BI16-	28
13	BI08+	BI17+	29
14	BI08-	BI17-	30
15	BI09+	BI18+	31
16	BI09-	BI18-	32

Figure 6.8-1Frame of Input Terminal

Name	Description	
BI01+	The No.1 and No.2 programmable binary input.	
BI02+		
BI01~ BI02-		
BI03+	The No 2 and No 4 programmable binary input	
BI04+	The No.3 and No.4 programmable binary input.	

Name	Description	
BI03~ BI04-		
BI05+	The No Eprogrammable binary input	
BI05-		
BI06+	The Ne Commence the bin and insure	
BI06-	i ne No.o programmable binary input.	
BI07+		
BI07-	The No.7 programmable binary input.	
BI08+	The No 9 programmable binary input	
BI08-		
BI09+		
BI09-	The No.9 programmable binary input.	
BI10+		
BI11+	The No.10 and No.11 programmable binary input.	
BI10~ BI11-		
BI12+	The No.12 and No.13 programmable binary input.	
BI13+		
BI12~ BI13-		
BI14+	The No 14 programmable bipary input	
BI14-		
BI15+	The No.15 programmable binary input.	
BI15-		
BI16+	The No 16 programmable bipary input	
BI16-		
BI17+	The No 17 programmable bipary input	
BI17-		
BI18+	The No 18 programmable bipary input	
BI18-	The No. To programmable binary input.	

6.9 Binary Output Module

The BO module consists of 14 binary output, dry contacts, which conduct the signal functions showing the operating conditions or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable. All the contacts can independently receive tripping or closing commands from the main CPU module and then conduct these commands.

All the binary outputscan be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BO module.

The frame of the BO module terminal is described as below.

Output			
01	BO01 Comon	BO09 Comon	17
02	BO01 Open	BO09 Open	18
03	BO02 Comon	BO10 Comon	19
04	BO02 Open	BO10 Open	20
05	BO03 Comon	BO11 Comon	21
06	BO03 Open	BO11 Open	22
07	BO04 Comon	BO11 Cls	23
08	BO04 Open	BO12 Common	24
09	BO05 Comon	BO12 Open	25
10	BO05 Open	BO12 Cls	26
11	BO06 Comon	BO13 Comon	27
12	BO06 Open	BO13 Open	28
13	BO07 Comon	BO13 Cls	29
14	BO07 Open	BO14 Common	30
15	BO08 Common	BO14 Open	31
16	BO08 Open	BO14 Cls	32

Figure 6.9-1Frame of BO Terminal

Table 6-7 Terminal Definition and Description of BO Module

Name	Description
BO1	The No.1 programmable signal, tripping and closing binary output.
	Specially used for high current interruption.
BO2	The No.2 programmable signal, tripping and closing binary output.
	Specially used for high current interruption.
BO3	The No.3 programmable signal, tripping and closing binary output.
	Specially used for high current interruption.
PO4	The No.4 programmable signal, tripping and closing binary output.
BO4	Specially used for high current interruption.
BO5	The No.5 programmable signal, tripping and closing binary output.
	Specially used for high current interruption.
BO6	The No.6 programmable signal, tripping and closing binary output.
	Specially used for high current interruption.
BO7	The No.7 programmable signal, tripping and closing binary output.

Name	Description	
BO8	The No.8 programmable signal, tripping and closing binary output.	
BO9	The No.9 programmable signal, tripping and closing binary output.	
BO10	The No.10 programmable signal, tripping and closing binary output.	
5044	The No.11 programmable signal, tripping and blocking binary output.	
воп	Normal open and close contacts are both equipped.	
BO12	The No.12 programmable signal, tripping and blocking binary output.	
	Normal open and close contacts are both equipped.	
BO13	The No.13 programmable signal, tripping and blocking binary output.	
	Normal open and close contacts are both equipped.	
BO14	The No.14 programmable signal, tripping and blocking binary output.	
	Normal open and close contacts are both equipped.	

6.10 Binary Input/Output Module

The IO module provides 7 binary outputs, some dry contacts, which conduct the signal functions showing the operating conditions (device error) or tripping and closing commands (protection, auto-recloser or remote control). The specific function is performed by setting the relevant settings and wiring the external copper cable.

The IO module also contains 9 binary inputs, the optical isolated input terminals, which can perform different monitoring functions, such as detecting the breaker and switch positions of the corresponding bay. All the BI terminals can be used as general purpose binary inputs or special purpose (protection function or control function) binary inputs.

All the binary inputs and outputs can be visually and flexibly configured through the PRS IED Studio configuration tool, which determine what information do they transmit between the CPU module and BO module.

The frame of the IO module terminal definition is described as below.

	IO		
01	BI01+	BO01 Common	17
02	BI02+	BO01 Open	18
03	BI01~02 Common-	BO02 Common	19
04	BI03+	BO02 Open	20
05	BI04+	BO03 Common	21
06	BI03~04 Common-	BO03 Open	22
07	BI05+	BO04 Common	23
08	BI05-	BO04 Open	24
09	BI06+	BO05 Common	25
10	BI06-	BO05 Open	26
11	BI07+	BO06 Common	27
12	BI07-	BO06 Open	28
13	BI08+	BO06 Cls	29
14	BI08-	BO07 Common	30
15	BI09+	BO07 Open	31
16	BI09-	BO07 Cls	32

Figure 6.10-1Frame of the IO ModuleTerminal

The terminal definition of the IO module is described as below.

Table 6-8 Terminal Definition and Description of IO Module

Name	Description	
BI01+	The No.1 and No.2 programmable binary input.	
BI02+		
BI01~ BI02-		
BI03+	The No.3 and No.4 programmable binary input.	
BI04+		
BI03~ BI04-		
BI05+	The No.5programmable binary input.	
BI05-		
BI06+	The No.6 programmable binary input.	
BI06-		
BI07+	The No.7 programmable binary input.	

BI07-		
BI08+	The No 9 programmeble binary input	
BI08-	The No.o programmable binary input.	
BI09+	The No Q programmable bipary input	
BI09-	The No.9 programmable binary input.	
BO01	The No.1 programmable signal, tripping and closing binary output.	
BO02	The No.2 programmable signal, tripping and closing binary output.	
BO03	The No.3 programmable signal, tripping and closing binary output.	
BO04	The No.4 programmable signal, tripping and closing binary output.	
BO05	The No.5 programmable signal, tripping and closing binary output.	
ROOG	The No.6 programmable signal, tripping and blocking binary output.	
B000	Normal open and close contacts are both equipped.	
BO07	The No.7 programmable signal, tripping and blocking binary output.	
6007	Normal open and close contacts are both equipped.	

6.11 MR Plug-in Module (Mechanical Relay Input/Output)

2.18

SR7720 is input and output modules for mechanical protection. This module is used to output

various signals, issue trip commands and accept reset command.

The terminal definition of the connector is described as below.

	М	IR	
01	PWR+	BO_MR2_2	17
02	PWR-	BO_MR2_3	18
03	BI_MR01+	BO_MR2_4	19
04	BI_MR01-	BO_MR2_ Common	20
05	BI_MR02+	BO_MR3_1	21
06	BI_MR02-	BO_MR3_2	22
07	BI_MR03+	BO_MR3_3	23
08	BI_MR03-	BO_MR3_4	24
09	BI_MR04+	BO_MR3_ Common	25
10	BI_MR04-	BO_MR4_1	26
11	BO_MR1_1	BO_MR4_2	27
12	BO_MR1_2	BO_MR4_3	28
13	BO_MR1_3	BO_MR4_4	29
14	BO_MR1_4	BO_MR4_ Common	30
15	BO_MR1_ Common	Reset input+	31
16	BO_MR2_1	Reset input-	32

Terminal definition and description is shown as follows:

Table 6.2-9 Terminal definition and description of MR Plug-in Module

Symbol	Description
PWR+	Positive input of power supply for the device
PWR-	Negative input of power supply for the device
BI_MR1	Mechanical relay (MR) signal input 1
BI_MR2	Mechanical relay (MR) signal input 2
BI_MR3	Mechanical relay (MR) signal input 3
BI_MR4	Mechanical relay (MR) signal input 4
BO_MR1_1	NO contact, is closed when binary input BI_MR1 is energized.
BO_MR2_1	NO contact, is closed when binary input BI_MR2 is energized.
BO_MR3_1	NO contact, is closed when binary input BI_MR3 is energized.

Symbol	Description
BO_MR4_1	NO contact, is closed when binary input BI_MR4 is energized.
Common 1	Common terminal of negative supply of binary inputs
BO_MR1_2	NO contact, is closed when binary input BI_MR1 is energized.
BO_MR2_2	NO contact, is closed when binary input BI_MR2 is energized.
BO_MR3_2	NO contact, is closed when binary input BI_MR3 is energized.
BO_MR4_2	NO contact, is closed when binary input BI_MR4 is energized.
Common 2	Common terminal of negative supply of binary inputs
BO_MR1_3	NO contact, is closed when binary input BI_MR1 is energized.
BO_MR2_3	NO contact, is closed when binary input BI_MR2 is energized.
BO_MR3_3	NO contact, is closed when binary input BI_MR3 is energized.
BO_MR4_3	NO contact, is closed when binary input BI_MR4 is energized.
Common 3	Common terminal of negative supply of binary inputs
Reset signal	Reset input

7 HUMAN MACHINE INTERFACE

7.1 Overview

HMI is known as the Human Machine Interface. HMI is the main communication interface between the control system and the operator. The friendly LCD facilitates the operator, providing all operating system information in the screen of the front display panel, including binary inputs or outputs, circuit breakers status, version of operating system program, alarm signals, tripping operation, disturbance records, and signal of measuring quantities (voltage, current and angle) etc., Besides these, its also useful for modifying the operating system configuration settings and protection function settings as well. The HMI can also be helpful during commissioning work.

Additionally, the PRS IED studio software helps to conduct all above listed function through communication port (Ethernet cable) on the PC or laptop.

7.1.1 Design Structure

The design structural of PRS-778 Human Machine Interface (HMI) is user friendly and easy to operate in different situations. The design structure detail of HMI is follow:

• For monitoring the signal status, fault records and configuration of settings, high quality 320x240 dot matrix LCD with dim lite green back light display is equipped.

- For the access of device functions and control settings. 1 enter and 1 cancel keys, 4 functional keys, 4 arrow keys, 2 remote and local control keys and 2 CB control keys.
- For the indication of different types of alarming and tripping signals. Front panel of HMI includes 28 LEDs light indicator.
- For the remote access from the PRS IED studio configuration software, Ethernet commissioning interface is available.

The front and back panels of PRS-778 relay shown in figure 6.1.2 and 6.1.3 respectively.

7.1.2 Function mode

- HMI screen is used to monitor the successively status and information of various events, and also helps to configure the protection settings and device operating mode
- Navigation menu keys help the operator to locate the required data or information.
- Data record and printing function is available in PRS-778 relay setting.

In simple words, all functions of PRS-778 are user friendly.

7.1.3 Operating panel keypad and keys

The PRS-778 relay front penal have 9 keypads and 8 function keys help the operator to change the device settings according to the required situation and locate the different kind of data access. These all keys and keypad have different kinds of functions.

Table 7-1 Keys information table

Symbol of keys	Description
	Arrow keys left, right up and down respectively
F1 F2 F3 F4	Functional keys F1, F2, F3 and F4 respectively. These are configure according to user's demand.
Menu Clear Esc Enter	Different keys like Menu, Clear, Esc and Enter keys
	CB close key, Remote/Local control key, User login key and CB opening key respectively.

Figure 7.1.1 Overview of Front Panel Keypad and Keys

7.1.4 Indication of LED

2.16

The PRS-778 device consists of 28 front panel LEDs. The local view of front panel HMI consists of two protection status LEDs above the display level; healthy and alarm. The sixteen other configurable LEDs on the front panel of local-HMI and each LEDs can be configured with three colors like green, red and yellow according to user requirement. These LEDs can be configured through local HMI or PRS IED Studio. Additionally, sixteen LEDs shows 48 different alarming status.

Figure 7.1.2 Overview of Front Panel LED's

Table 7-2 LED indications

No.	Key label	Status	Description	
01	Healthy	Off	When the device is not energized.	
01	nealiny	Green	When the device is in normal working mode and ready to operate	
		Off	No alarm signal is energized when the device running normally.	
02	Alarm	Croop/Vollow/Dod	Alarm signal is issued. When any kind of abnormality signal is	
		Green/ fellow/Red	detected. LED light color is configured according to user demand.	
		Off	None of signal is energized when the device running normally.	
02 19	Configurable		These LEDs can be configured according to user demand like	
03~18	Configurable	Green/Yellow/Red	different operating functions, such as tripping, alarm, reclose, CB	
			open or close and synchro-check etc.	
		0#	None of signal is energized when the functional key is	
10.00	Configurable	Oli	deactivated.	
		Croop/Vellow/Dod	These LEDs indicate the functional keys are deactivated and they	
		Green/ fellow/Red	can be configured according to user demand.	
			None of signal is energized when the functional key is	
		Off	deactivated.	
23	CB Close			
		Croop/Vollow/Dod	This LED indicate the CB Close key is activated and it can be	
		Green/ tellow/Red	configured according to user demand.	

No.	Key label	Status	Description		
24	Pomoto	Off	The operation mode is determined by the BI.		
Green/Yellow/Red		Green/Yellow/Red	The device is in the "remote" mode		
25		Off	The operation mode is determined by the BI.		
25 Local		Green/Yellow/Red	The device is in the "Local" mode		
		Off	When user login function is not enable.		
26	User login	Green	When user login function works normally.		
		Yellow/Red	When user login function is not working normally.		
		0#	None of signal is energized when the functional key is		
27		Oli	deactivated.		
27 CB Open	Green (Vellow/Ded	This LED indicate the CB Open key is activated and it can be			
		Green/ reliow/Red	configured according to user demand.		
		Off	When no Ethernet cable is connected with device.		
20	Ethernet	Green	When it works normally.		
20	interface port	Vellow/Ded	Alarm signal indication, in case of abnormality. LED color can be		
	Yellow/Red		configured according to user requirement/demand.		

> General description of LEDs indication

Healthy

This LED indication shows, device is energized through normal power supply, and ready to work under the normal atmosphere.

Alarm

This LED indication shows, when any abnormality alarm is detected in the system.

Trip

This LED indication shows, when any protection function is operated.

Reclose

This LED indication shows, when auto-recloser function is operated.

CB Open

This LED indication shows, when the circuit breaker is in open position.

CB Close

This LED indication shows, when the circuit breaker is in close position.

7.1.5 Configurable keys

The PRS-778 device HMI front panel consists of four configurable keys. These configurable functional keys provide shortcuts for certain menu or act as a control button. The default view of configurable functional keys (F1, F2, F3 and F4) are shown in above figure 7.1.1. The detail operation of functional keys are listed in below table 7.1.3:

Keys	Function	Description	Remarks
	Control	For binary input and output control instantiated according to the configuration tool	This control function, control through three ways like puls, hold and exit.
F1, F2, F3 and F4	Shortcut	"Main menu", "system single line", "event", "measurement", "fault recording", "device status", "clear" 7 selected 1	This shortcut function provide easy access to device operation settings and it is configurable according to user demand.
	Sign out	Do not perform the key function	-

Table 7-3 Information of functional keys

7.2 LCD Diplay description of HMI

7.2.1 Ovierview

In this part of HMI, the detail of LCD display function is described.

7.2.2 Normal display structure of LCD

The normal operating condition of local HMI LCD display structure is shown below in figure 7.2.1.

Figure 7.2.1 General Overview Display of Local HMI LCD Screen

According to the overview of local HMI. LCD display is divided into five parts. These parts are listed below:

- 1. Main data display zone
- 2. Outer boundary zone

- 3. Date and time display zone
- 4. Time synchronization or GPS
- 5. Data monitoring zone

Main data display zone provides information that the user wants to access like measurement value status, fault records, circuit breaker status, single line diagrams, alarm signals, protection function settings, and synchronization status etc.

Outer boundary zone is known as free text zone and no data display in this zone. It defines the boundary of LCD display zone.

Date and time display zone shows the real monitoring value of date and time. The user can set these date and time value according to requirement. The display format of date and time is yyyy-mm-dd and hh:mm:ss respectively. The time setting format can be easily set to the user time zone demand.

Time synchronization

Data monitoring zone

7.2.3 Main menu display

In order to make sure the user can control PRS-778 relay easier, simple and fast, the CYG Co, Ltd designes a flat-panel of main menu LCD display that contain ten main controlling function.

These controlling function are listed below:

- 1. Physical
- 2. Review
- 3. Monitor
- 4. Event
- 5. Record
- 6. Setting
- 7. CONFIG
- 8. Test
- 9. Clear
- 10. Language

The main menu display screen shown in below figure 7.2.2. The main menu will deal with the operation of installation work togetherwith providing basic support and instructions to help user control.

Figure 7.2.2 LCD General Overview Display of Main Menu

7.3 Sub menu functions of main menu

This part of HMI, the detail of menu sub-functions is described. These all sub-functions display on the front panel of HMI LCD.

7.3.1 Physical Information

In this section, describe all the physical information related to device software and device communication. The overview display of physical information is shown in below figure 7.3.1.

Software	Software
Communication	Network setting

Figure 7.3.1 Overview Display of Physical Information Sub-functions

7.3.1.1 Software

In this sub-section of physical information, the software information of the protection relay is described, including the device type, protection relay software, uniqueness code and protection date etc. User can access this function through the following path: "Physical information > software". The software information data divided into two pages and the detail of information is listed in below figure 7.3.2 and table 7.3.1:

PRS-7367 Feed	ler Protection	
Device type	: PRS-7367	
P-Software ver.	: V1.20	
P-CRC	: 3EA9	
P-Date	: 2016.12.28	

Figure 7.3.2 Overview Display Diagram of Software Information

Table 7-4 Detail of Software information

Name	Function display	Description
Device type	PRS-XXXX	Discribe the type of protection relay
P-Software ver	V1.20	Describe the version of protection relay software
P-CRC	3EA9	Protection Cyclic redundancy check code
P-Date	yyyy-mm-dd	Protection CPU date
M-Software ver.	V1.20	MCPU software version
M-CRC	6F3C	MCPU Cyclic redundancy check error
M-Date	yyyy-mm-dd	Management CPU date
Uniqueness code	A01-30000000FFFFFFF	

7.3.1.2 Communication

This section, describes the information communication of network setting of the protection relay including IP, MAC and NetMask of network 1, 2 and 3 respectively. User can access this function through the following path: "Physical information > communication". The network setting data of communication information is listed in below figure 7.3.3 and table 7.3.2:

	Ne	twork setti	ng	
NET 1	IP: 2	22.111.112.0	03	
NET 1 M	MAC: 0	0.00.DE.6F.	70.03	
NET 1 N	VetMask :	255.255.25	5.000	
NET 2	IP: 1	96.005.001.0	03	
NET 2 M	AAC: 0	0.01.C4.05.0	1.03	
NET 2 N	VetMask :	255.255.25	5.000	
NET 2	IP: 1	96.005.002.0	03	
NET 3 N	AAC:	00.02.C4.05	02.03	
NET 3 N	VetMask :	255.255.25	5.000	

Figure 7.3.3 Overview Display Diagram of Network Setting

Table 7-5 Communication data detail

Name	Function display	Description
NET 1 IP	222.111.112.003	IP address of internet protocol for Ethernet port 1
NET 1 MAC	00.00.DE.6F.70.03	MAC address of internet protocol for Ethernet port 1
NET 1 NetMask	255.255.255.000	NetMask address of internet protocol for Ethernet port 1
NET 2 IP	196.005.001.003	IP address of internet protocol for Ethernet port 2
NET 2 MAC	00.01.C4.05.01.03	MAC address of internet protocol for Ethernet port 2
NET 2 NetMask	255.255.255.000	NetMask address of internet protocol for Ethernet port 2
NET 3 IP	196.005.002.003	IP address of internet protocol for Ethernet port 3
NET 3 MAC	00.02.C4.05.02.03	MAC address of internet protocol for Ethernet port 3
NET 3 NetMask	255.255.255.000	NetMask address of internet protocol for Ethernet port 3

7.3.2 Review Information

This section is divided into two sub-parts, including time mode and the information how to review protection relay monitoring data. This section only provides the setting view display and user can't change the display information of relay. The overview display of review information is shown in below figure 7.3.4.

Timing Mode	Timing Mode
Prot Settings	Setting group
Ū.	Prot Settings

Figure 7.3.4 Overview Display of Review Information Sub-functions

7.3.2.1 Timing Mode

This section, the user can see the time information like Uart IRIG-B, Opti IRIG-B and SNTP (Simple Network Time Protocol) information and the user can't change any kind of information. Users can access this function through the following path: "Review > Timing Mode". The overview display of timing mode is shown in below figure 7.3.5.

	Timing	Mode	
Set Timing Mode None →Uart IRIC Opti IRIC SNTP	3-В 3-В	Note2	
Review / Tim	ing Mode	9	

Figure 7.3.5 Overview Display of Timing Mode

7.3.2.2 Prot Settings

This section is divided into two sub-parts like setting group and protection settings.

1- Setting Group

This sub-section the user can see the information about which group is the current group. There are totally 4 groups.

2- Prot Settings

This section the user can see the different kind of information like public, measurement and protection function operation settings etc. User can access this function through the following path:

"Review > Prot Settings". This section contains 01 to 11 pages and 42 parts of relay settings. The information data structure of protection setting is listed in below figure 7.3.6 and table 7.3.3:

Figure 7.3.6 Overview Diagram of Prot Setting (a) Public Setting (b) Measurement Control Setting (c) Overcurrent Protection Setting (d) Phase Overcurrent Protection Setting of Stage 1

Table 7-	6 Protection	settings
----------	--------------	----------

Setting No.	Functionality	Description
01	Public	This part shows the information of primary and secondary ratio of
		current and voltage respectively. Also shows the value of operating
		system frequency.
02	MEA_CTRL	Known as Measurement control and the user can see the different
		information like dead zone values, synchronism values, bus bar rated
		operating values, angle difference and remote operating values etc.
		This part contains into 01-05 pages.
03	OC_VEC	Known as overcurrent protection with voltage element control and the
		user can see the relevant setting of OC_VEC in this part.
04-07	OCTP_67P (1-4)	Known as overcurrent protection 67P (1-4) and user can see the
		relevant setting of 67P (1-4) like direction mode, current start value,
		curve setting parameters, RCA angle and minimum protection
		operating time etc. This part contains into 02 pages.
08-11		Known as non-directional overcurrent protection 51P (1-4) and user
	001F_31F (1-4)	can see the relevant setting of 51P (1-4) like multiplier current setting,

Setting No.	Functionality	Description
		current start value, curve setting parameters, reset time and minimum
		protection operating time etc. This part contains into 02 pages.
12.15		Known as non-directional earth fault protection 51G (1-4) and user can
		see the relevant setting of 51G (1-4) like current start value, multi
12-15	0010-510 (1-4)	current setting, curve setting parameters, reset time and minimum
		protection operating time etc. This part contains into 02 pages.
		Known as directional earth fault protection 67G (1-4) and user can see
		the relevant setting of 67P (1-4) like direction mode, RCA angle,
16-19	OCTG_67G (1-4)	current start value, multi current setting, curve setting parameters,
		3phase zero sequence enable/disable and minimum protection
		operating time etc. This part contains into 02 pages.
	OCTN_46N	Known as negative sequence current protection 46N and user can see
20		the relevant setting of 46N like current start value, multi current setting,
20		curve setting parameters, minimum protection operating time and reset
		time etc. This part contains into 02 pages.
		Known as phase discontinuity protection 46D and user can see the
21		relevant setting of 46D like the ratio b/w negative and positive current,
21		minimum phase starting current, protection operating time, 46D
		enable/disable and reset time etc.
		Known as switch onto fault SOTF and user can see the relevant setting
		of SOTF like SOTF operating mode and initiating mode, SOTF dead
22	OCT_SOTF	line current and voltage, SOTF dead line time, SOTF current and
		voltage detection time and SOTF reset time etc. This part contains into
		02 pages.
		Known as three phase thermal overload protection 49F and user can
22		see the relevant setting of 49F like the rated current setting of 49F, 49F
23	PTTR_49F	time multiplie, 49F K factor, 49F K trip and alarm setting and 49F trip
		and alarm enable/disable etc.
	UVPR_27P	Known as positive sequence undervoltage protection 27P and user
24		can see the relevant setting of 27P like 27P voltage start setting, 27P
		operating time, 27P block voltage setting and 27P enable/disable etc.
25	RBF_51BF	Known as circuit breaker failure protection 51BF and user can see the
		relevant setting of 51BF like 51BF enable/disable, 51BF retrip
		enable/disable, 51BF operating residual current, 51BF retrip and fail
		time etc. This part contains into 02 pages.
26-27	OFRS_81O (1-2)	Known as overfrequency protection 81O (1-2) and user can see the
		relevant setting of 81O (1-2) like 81O operating time, 81O blocking
		voltage setting and 81O enable/disable etc.
	PFRC_81R	Known as frequency gradient protection 81R and user can see the
20		relevant setting of 81O (1-2) like 81R frequency gradient start value,
28		81R Negative/positive change in frequency, 81R operating time, 81R
		blocking voltage setting and 81R enable/disable etc.
29	OVPR_59P	Known as positive sequence overvoltage protection 59P and user can

Setting No.	Functionality	Description
		see the relevant setting of 59P like 59P voltage start setting, 59P
		operating time and 59P enable/disable etc.
		Known as negative sequence overvoltage protection 59N and user can
30	OVNR_59N	see the relevant setting of 59N like 59N voltage start setting, 59N
		operating time and 59N enable/disable etc.
		Known as residual overvoltage protection 59G and user can see the
31	OVGR_59G	relevant setting of 59G like 59G voltage start setting, 59G operating
		time and 59G enable/disable etc.
		Known as three phase overvoltage protection 59 (1-2) and user can
		see the relevant setting of 59 (1-2) like 59 voltage start value, 59
32-33	OVLR-59 (1-2)	operating curve setting parameters, 59 time constant multiplier, 59
		start phase number, 59 reset time and 59 minimum protection
		operating time etc. This part contains into 02 pages.
		Known as under frequency protection 81U (1-4) and user can see the
34	UFRS_81U (1-4)	relevant setting of 81U (1-4) like 81U frequency start value, 81U
		operating time, 81U voltage blocking value and 81U enable/disable
		etc.
		Known as underfrequency restore protection 81U and user can see the
20		relevant setting of 81U like 81U frequency start value, 81U operating
38	OT RE_010	time, 81U valid duration time of operation, 81U voltage blocking value
		and 81U enable/disable etc.
		Known as auto-recloser 79 and user can see the relevant setting of 79
		like 79 enable/disable, 79 synchronous enable/diable, 79
39	PREC_79	discremination reclosing time for 1 to 5 operation, 79 auto lockout reset
		time, 79 recovery delay time after blocking and 79 maximum shots etc.
		This part contains into 03 pages.
		Known as fuse failure supervision PTS and user can see the relevant
40	ALM_PTS	setting of PTS enable/diable, PTS Operate level of pos seq
		undervoltage and PTS check mode of PT failure etc.
		Known as current circuit supervision CTS and user can see the
41	ALM_CTS	relevant setting of CTS enable/diable, CTS current start value and CT
		external zero-sequence current calculation criteria disable/enable.
12	ALM TOS	Known as trip circuit supervision TCS and user can see the relevant
42	ALIVI_103	setting of TCS enable/diable and TCS operate time.

7.3.3 Monitoring Information

This section divided into three sub-parts and describe the information of real time monitoring data of PRS-778 feeder protection relay. This section only provides the sample, harmonics and BI data information. In this section user can easily access the real-time monitoring data view of relay through arrow keys. The overview display of monitoring information are shown in below figure 7.3.7.

Sample		
Harmonic	Harmonic	
BI	BI	
	D-BI	
/ Monitor / So	mple	

Figure 7.3.7 Overview Display of Monitoring Information Sub-functions

7.3.3.1 Sample

This section divided into one sub part like measurements and describe the detail information of all measurement values such as current, voltage and angle etc. User can access this function through the following path: "Monitor > Sample". This section contains 01 to 04 pages and 36 measuring quantities. The measurement data structure of relay is listed in below figure 2.3.8 and table 7.3.4:

		Measurements	
→ Ua	=	0000.00V	
Ub	=	0000.00V	
Uc	=	0000.00V	
Ux	=	0000.00V	
Ia	=	000.000A	
Ib	=	000.000A	
Ic	=	000.000A	
3I0D	=	000.000A	
Uab	=	0000.00V	
Ubc	=	0000.00V	

Figure 7.3.8 Overview Display of Measurement Section Quantities

Table 7-7	Measurement	quantaties

No.	Measurment function	Value (range)	Description	
1	Ua	0000.00V	Phase A measured voltage	
2	Ub	0000.00V	Phase B measured voltage	
3	Uc	0000.00V	Phase C measured voltage	
4	Ux	0000.00V	Ground measured voltage	

No.	Measurment function	Value (range)	Description
5	la	000.000A	Phase A measured current
6	Ib	000.000A	Phase B measured current
7	Ι _c	000.000A	Phase C measured current
8	310D	000.000A	Three phase zero sequence current from external source
9	U_{ab}	0000.00V	Phase AB measured voltage (phase to phase measured voltage)
10	U _{bc}	0000.00V	Phase BC measured voltage (phase to phase measured voltage)
11	U _{ca}	0000.00V	Phase CA measured voltage (phase to phase measured voltage)
12	Duab/dt	000.000V/S	Uab rate of change of voltage
13	Dubc/dt	000.000V/S	Ubc rate of change of voltage
14	Duca/dt	000.000V/S	Uca rate of change of voltage
15	UxDudt	000.000V/S	Ux rate of change of voltage
16	Fr	000.000 Hz	Frequency
17	U _x Fr	000.000 Hz	Ux voltage frequency
18	Dfdt	000.000 Hz/S	Rate of change of frequency of phase to phase
19	UxDfdt	000.000 Hz/S	Rate of change of frequency of Ux voltage
20	U ₁	0000.00V	Positive sequence measured voltage
21	U ₂	0000.00V	Negative sequence measured voltage
22	3U0	0000.00V	Calculated Three phase zero sequence voltage
23	l ₁	000.000A	Positive sequence measured current
24	l ₂	000.000A	Negative sequence measured current
25	3I ₀	000.000A	Calculated Three phase zero sequence current
26	UJYa	000.000V	
27	UJY₅	000.000V	
28	UJY₀	000.000V	
29	MUTIME	000.000 HZ	
30	Р	0000.00 W	Power
31	Q	0000.00 VAR	Reactive power
32	S	0000.00 VA	Apparent power
33	COS	000.00	Cos value
34	DU	000.00V	Vlotage difference
35	DF	000.000Hz	Frequency difference
36	DA	000.00°	Angle difference

7.3.3.2 Harmonic

In this section, the user can see the calculated harmonic content data list of all phase voltage and current and also the RMS value of all three phase voltage and current. User can access this function through the following path: "Monitor > Harmonic". The harmonic overview display diagram of relay is listed in below figure 7.3.9. After the measurement channel is selected, the harmonic data of the channel can be viewed.

	Ua Harmonic
Harmonic	$ \begin{array}{rcl} & & & \\ $
Select Channel <u>Ua</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Cancel — Enter	
(a)	(b)

Figure 7.3.9 LCD Display Diagram (a) Overview of Entrance Harmonic Monitoring Chart (b) Ua Harmonic Content Display Chart of Page 1

7.3.3.3 BI

This section divided into two sub-parts and describe the information of binary input (BI) of this IED seen in the above figure 7.3.5. This section only display all the binary input data. User can access this function through the following path: "Monitor > BI".

1- BI

This part of single BI monitoring data contains 01 to 04 pages and 32 binary inputs. The BI display diagram of the IED is listed in below figure 7.3.10 (a):

2- D-BI

D-BI is stand for double binary input function. The D-BI display diagram of relay is listed in below figure 7.3.10 (b):

7.3.4 Event Information

This section is divided into four sub-section and describe the information of all events, like fault

events, alarming information (warning records), selfchk info, SOE, remote control, user records and power records etc. The LCD display event diagram of the IED is listed in below figure 7.3.11:

Port Records	Fault Events
Alarm Records	Warning Records
	Selfchk Info
SOE	SOE
Dev Logs	Remote Control
-	User Records
	Power Records
/ Event / Prot Rrcords	

Figure 7.3.11 Overview Display of Event Information Sub-functions

7.3.4.1 Port Records

This section divided into one sub-function like fault events and this device can store 1024 latest protection records. User can access this function through the following path: "Event > Port Records". The detail of this section divided into nine points:

- 1. Shows date and time
- 2. Protection function status
- 3. Shows operation of protection function like which protection function is acted.
- 4. Shows operated phases information
- 5. Shows fault clearance delay time
- 6. Shows slot info like management slot (slot3) or protection slot (slot9).
- 7. Shows fault number
- 8. Not reverted
- 9. Shows fault events page number information, it will be increase or decrease w.r.to numbers of fault.

The diagram of fault event display of relay is listed in below figure 7.3.12:

Figure 7.3.12 Overview Display of Fault Events

7.3.4.2 Alarm Records

This section divided into two sub-functions like warning records and selfchk Info see figure 7.3.11. This devise can save latest 1024 alarm records.

1- Warning Records

In this section user can see all warning records like protection warning records and TimingErr warning records etc. User can access this function through the following path: "Event > Alarm Records". The overview display of warning record is shown in below figure 7.3.13.

	Warning Reco	ords
2018-04-11 TimingErr Phase :	12:17:22.693ms	Act FaultNO.:00001
Slot3		Not Reverted

Figure 7.3.13 Overview Diagram of Warning Records Info

2- Selfchk Info

The self-check info checks the communication status between devices, such as carrier channel abnormality, fiber channel abnormality, GOOSE communication abnormality and internal AD sampling abnormality and etc. To summarise, this device also check hardware, software and configuration file and it can totally save latest 1024 records. User can access this function through the following path: "Event > Alarm Records". The overview display of SelfChk info is shown in below figure 7.3.14.

	SelfChk Info	
2010.04	10 11 10 22 000	
2018-04-	19 11:48:22.880ms	
Slot3 Sett	ing SelfChk Err	Act
Mark	01000186	Not Reverted
2018-04-	19 11:48:22.880ms	
Slot3 Sett	ing SelfChk Err	Act
Mark	01000186	Not Reverted
2018-04-1	19 11:20:37.178ms	
Slot3 Setti	ing SelfChk Err	Act
Mark	010000FA	Not Reverted

Figure 7.3.14 Overview Display Diagram of SelfChk Info

7.3.4.3 SOE

In this section SOE checks following condition:

- When the state of binary input signal changes, eg. a hard contact, the time tag of the state quantity is marked by the device and the time is defined after debouncing.
- When the state of GOOSE signal changes, the time tag of the state quantity adopts the external input source signal time tag. The GOOSE signal acquisition has no debouncing time.

User can access this function through the following path: "Event > SOE". This device can save 1024 latest SOE records. The diagram of SOE record is shown in below figure 7.3.15.

SOE	
2018-04-11 16:48:22.907ms	
Slot03 WFYXO1_F	0->1
(2259)	
2018-04-11 04:02:27.706ms	
Slot03 WFYXO1_H	0->1
(2259)	
2018-04-11 03:40:47.786ms	
Slot03 WFYXO1_H	0->1
(2259)	

Figure 7.3.15 Overview Display Diagram of SOE

7.3.4.4 Dev Logs

This section divided into three sub-function like remote control, user records and power records see figure 7.3.11.

1- Remote Control

This part shows the remote control signals like circuit breaker, disconnector, reset signal, transformer tap changer, earthing switches etc. The recorded information includes the command source, command time, operation result and failure reason etc. This device can store 1024 latest remote control records. User can access this function through the following path: "Event > Dev Logs". The diagram of remote control functions are shown in below figure 7.3.16.

	Remote Con	ntrol
2018-04-19	11:48:22.880ms	
Channel: 000	Port 01	Parameters : DC Close
Process : execut	tive Succeed	
Origin IP: 192	.168.253.200	
2018-04-16	18:08:32.180ms	
Channel: 000	Port 01	Parameters : DC Close
Process : execut	tive Succeed	
Origin IP: 192	.168.253.200	
		Ì

Figure 7.3.16 Overview Display Diagram of Remote Control Access

2- User Records

In this section user can see the setting of user reocrds with slot number, time and date. User can access this function through the following path: "Event > Dev Logs". The diagram of user records are shown in below figure 7.3.17.

-	User Records	-
2018-04-19	09:22:43.667ms	
Modify Setting		Slot9
2018-04-19	09:22:43.667ms	
Modify Setting		Slot9
2018-04-19	09:22:42.718ms	
Modify Setting		Slot9
2018-04-19	09:22:20.332ms	
Modify Setting		Slot9

Figure 7.3.17 Overview Diagram of User Records

3- Power records

In this section user can see the setting of power records date and time with energizing and dis-energizing slot number. The number of pages of this section can be increase or decrease through the storage of power records. User can access this function through the following path: "Event > Dev Logs". The diagram of power record is shown in below figure 7.3.18.

	Power Records		
2010 04 10	10.02.20.514		
2018-04-19	10:03:38.514ms		
Power on		Slot9	
2018-04-19	10:02:43.627ms		
Power Off		Slot9	
2018-04-19	10:02:49.718ms		
Power on		Slot3	
2018-04-19	10:02:430.232ms	5	
Power Off		Slot3	
/ Event / Dev I	Logs		0003/001

Figure 7.3.18 Overview Diagram of Power Records

7.3.5 Record Information

In this section, user can see the disturbance records and this section is divided into one sub-section. The diagram of disturbance record is shown in below figure 7.3.18.

Fault Wave	→ Fault W	ave
Disturbance	Records / Fault Way	/e

Figure 7.3.19 Overview Display of Records Information

7.3.5.1 Fault wave

In this section user can see the disturbance records of all the faults. User can access this function through the following path: "Disturbance Records > Fault Wave". The diagram of faulty wave records are shown in below figure 7.3.20.

		Wave List	
No.01			
PRS-7367	Feeder	Protection_LD1_0_20	18041
9_114735_	518		
No.02			
PRS-7367	Feeder	Protection_LD1_0_20	18041
9_114752_	918		
No.03			
PRS-7367	Feeder	Protection_LD1_0_20	18041
9_140344_3	328		

Figure 7.3.20 Overview Diagram of Fault Wave List

7.3.6 Setting Information

1.8

This section divided into two sub-section like set group and protection settings. In this part user can set the device configuration according to operation demand. The overview display of setting information is shown in below figure 7.3.21.

Set group	Set Grp Change	
	Grp Copy	
Prot Settings	Settings	

Figure 7.3.21 Overview Display of Setting Information Sub-functions

7.3.6.1 Set Group

This sub-section is divided into two further sub-section like Set Grp change and Grp Copy and in this part user can change the group setting.

1- Set Grp change

This device has four setting groups and user can easily configure the group setting according to operation demand. This setting is divided into four steps. User can access this function through the following path: "Setting > Set group". The procedure of group setting change is explaining in below figure 7.3.22.

Firstly, enter the device login password. Secondly, select group setting. Thirdly, download new configuring setting. Fourthly, cancel to return back or exit.

Figure 7.3.22 Procedure Diagram of Group Setting Change

2- Grp Copy

This device has four setting groups and user can easily copy one group settings and save this same setting in other group. User can access this function through the following path: "Setting > Set group". The procedure detail of group setting copy is explaining in below figure 7.3.23.

Figure 7.3.23 Procedure Diagram of Group Setting Copy

7.3.6.2 Prot Settings

In this section user can change the different kind of information like public, measurement and protection operation function settings etc. This section contains 01 to 11 pages and 42 parts of relay settings. User can access this function through the following path: "Setting > Prot Settings". The detail of protection setting is listed in above table 7.3.3 and below figure 7.3.24:

Figure 7.3.24 Diagram of Protection Setting

7.3.7 Configuration Information

This section divided into two sub-function like time and authorization. In this part user can set the device date and time according to the time zone of certain country. Besides that, the monitoring and controlling authorization of different users (of different post) can also be modified. The diagram of configuration information is shown in below figure 7.3.25.

Figure 7.3.25 Overview Display of Configuration Information Sub-functions

7.3.7.1 Time

This part is divided into two sub-section date & time and time zone see figure 7.3.25. User can access this function through the following path: "Configuration > Time".

1- Date and time

In this section user can easily set date and time according to practical demand. See figure 7.3.26 (a):

2- Time zone

In this section user can easily set time zone according to their region. See figure 7.3.26 (b):

Date Time	TimeZone
Date: 2018 Y 04 M 19 D Time: 14 H <u>53</u> M 11 S	TimeZone: <u>UTC</u>
/Configuration /Time	/Configuration /Time
(a)	(b)

Figure 7.3.26 Diagram of (a) Date & Time Setting (b) Time Zone Setting

7.3.7.2 Authorization

This part is divided into one sub-function. see figure 7.3.24. User can access this function through the following path: "Configuration > Authorization".

1- User

In this section user can easily set relay operator setting like operator 1 or 2 or guest 1. See below table 7.3.5 and figure 7.3.27:

User operator selection options	Authorization
	The manufacturer user has all the configuration functions of
	access to device setting. At the same time, only the
	manufacturer's user has the access to hide, read, and write
	(display) to the logical device LD, logical component LN and
	logical component data item DO of 61850 protocol and logical
	picture subgraph. Therefore, as to realize the manufacturer's
Manuf	basic configuration of the device and not be suitable for
	opening up the correlation. The content settings for users are
	hidden and should not be opened to users to modify, but the
	contents they need to view are set to read-only.
	Note!
	Non of other users have access to this setting function except
	manufacturer.
	The engineering user staff account has all the general access
	of configuration (view and modification) functions of the
	configuration tool, including drawing logical pictures, main
	wiring diagrams etc.
	Note!
Engin_1	In this user login section, user cannot create an account
	configuration of the configuration device setting.
	1) The engineering account can only view and modify
	its own password.
	2) This account automatically withdraws or logoff
	after 30 minutes without operation.
	The operator user account, grnerally it can only view the
	configuration of the device, the logical picture, wiring diagram
Oper_1 & Oper_2	and the logical device component. In this section user can't
	create and modify any of its configuration, such as moving the
	map element position and deleting port association etc.
	Guest user account is only for visitors. In this section user
Guest_1	have no rights to change or view any kind of configuration
	information.

Table 7-8 User setting detail

7.3.8 Test Information

This section is divided into three sub-parts. In this section user can check the testing accuracy of relay like tripping test, signal test, operation test, warning test, block test, measurement test and mandatory wave etc. The overview display diagram of test information is shown in below figure 7.3.28:

Output Test –	→ Trip Test
	Signal Test
Comm Test	Operation Test
	Warning Test
	Block Test
	Selfchk Test
	Measure Test
	Status Test
Mandatory Wave	Mandatory Wave
/ Test / Output Test	

Figure 7.3.28 Overview Display of Test Information Sub-functions

7.3.8.1 Output Test

Output test is divided into two sub-test like tripping test and signal test. See figure 7.3.27. User can access this function through the following path: "Test > Output Test".

1- Trip Test

In this section user can simulate different trip signal, but the tripping simulation can only be conducted when the IED is under maintenance. see below figure 7.3.29 (a):

2- Signal Test

In this section user can simulate all kind of signal test like operation signal, alarm signal and signal reset. see below figure 7.3.29 (b):

Trip Test	Signal Test
Trip Close TripBU TripA TripB TripC TripN	OpSign AlmSign SignReset
/ Test / Output Test 0001/0005	Test / Output Test 0001/0001
(a)	(b)

7.3.8.2 Comm Test

Common test is divided into six sub-test like operation test, warning test, block test, SelfChk test, measure test and status test, etc. User can access this function through the following path: "Test > Comm Test". The LCD overview display diagram of common test information of every tests is shown in below figure 7.3.30.

Figure 7.3.30 LCD Display Diagram of (a) Operation Test (b) Warning Test (c) Block Test (d) SelfChk Test (e) Measurement Test (f) Status Test

1- Operation Test

In this section user can simulate the peotection operation event like 51P, 51G and 67P operation function etc. see above figure 7.3.30 (a):

2- Warning Test

In this section user can simulate the warning event like thermal alarm, breaker failure alarm and PTS alarm etc. see above figure 7.3.30 (b):

3- Block Test

In this section user can simulate the tripping block event like data bus common interrupt blocking function, data bus Err blocking function, A/D Sam quality Err, A/D SelfChk Err, LVDSIO Read Err, parameter CRC Chk Err and core common data bus abnormal blocking function test etc. see above figure 7.3.30 (c):

4- SelfChk Test

In this section user can simulate the SlefChk event like data bus common interrupt SelfChk function, core common data bus abnormal SelfChk function test, relay interface Chk err, initial Cfg err and Cfg (configuration) file number abnormal SelfChk test etc. see above figure 7.3.30 (d):

5- Measurement Test

In this section user can simulate the measurement values like voltage and current of phase A, B & C, zero sequence voltage and current, frequency and angle etc. see above figure 7.3.30 (e):

6- Status Test

In this section user can simulate the BI changing status, like reset, remote, CB close or open, CBF, TCS, SOTF start and BI open or close etc. see above figure 7.3.30 (f):

7.3.8.3 Mandatory Wave

In this section user can check the mandatory wave function. User can access this function through the following path: "Test > Mandatory wave". After enter this section user can manually start disturbance recording in disturbance record section. See figure 7.3.20 (fault wave):

7.3.9 Clear Information

Clear record	Clear record	
Clear / Clear I	record	

Figure 7.3.31 Overview Display of Clear Information Sub-functions

7.3.9.1 Clear record

In this section user can clear the record history of different functions like Alarm record, LED record and act record etc. User can access this function through the following path: "Clear > Clear record". The clear record structure of LCD display is listed in below figure 7.3.32:

Clear record	
Clr LED	
Clr AlmRec	
Clr Strart	
Clr SoeRec	
/ Clear / Clear record	0001/0002

Figure 7.3.32 Diagram of Clear Record Display

7.3.10 Language Information

Language	e Setting	
(- 		

Figure 7.3.33 Overview Display of Language Information Sub-functions

7.3.10.1 Language Setting

In this section user can set the IED language according to their demand like Chinese, English, Hindi, German and Russian etc. User can access this function through the following path: "Language > Language setting". The language setting diagram of relay is listed in below figure 7.3.34:

Language :	<u>English</u>	
anguage / Lang	guage	

Figure 7.3.34 LCD Display diagram of Language Setting

8 Configurable Function 2.2

8.1 General Description

The IED is equipped with flexible and powerful configuration functions, including the system configuration, the protection function configuration, the binary input configuration, the binary output configuration and the LED indicator configuration through the auxiliary software, which makes this IED meet various practical requirements.

8.2 Introduction of PRS IED StudioSoftware

The PRS IED Studio software is developed in order to meet customer's demand on functions of the UAPC platform device, such as device configuration and programmable design. It selects substation as the core of data management and the device as fundamental unit, supporting one substation to supervise many devices.

The software provides two kinds of operation modes: on-line mode and off-line mode. The on-line mode supports the Ethernet connection with the device through the standard IEC60870-5-103 and can be capable of uploading and downloading the configuration files through Ethernet net; the off-line mode supports the off-line setting configuration, including protection logic programming, the binary input configuration, the binary output configuration and etc.

9 Communication Protocol

9.1 Overview

This chapter introduces the data communication and the corresponding hardware of the IEDs. The IED support a wide range of protocols via communication interface (RS-485 or Ethernet port). The protocols are of international standard for communication in substations and it can be selected by modifying the communicationparameters.

Local communication with the IED via a computer is achievable throught both the front and back Ethernet ports. Furthermore, remote communication with SCADA or the station gateway is also achievable by choosing the IEC60870-5-103, IEC61850, DNP3.0 communication protocol via RS485 or Ethernet port.

It should be noted that the descriptions contained within this chapter do not aim to fully detail the protocol itself. This section serves to describe the specific implementation of the protocol in the relay.

9.2 Rear Communication Interface

9.2.1 Ethernet Interface

This protective device can provide three rear Ethernet interfaces (optional) and they are unattached each other. Parameters of each Ethernet port can be configured in the menu.

9.2.1.1 Ethernet Standardized Communication Cable

It is recommended to use twisted screened eight-core cable as the communication cable. A picture is shown bellow.

Figure 9.2.1 Ethernet communication cable

9.2.1.2 Ethernet Communication protocol

Ethernet communication protocols are supported by the device including: IEC60870-5-103, PRP, RSTP, DNP3.0, IEC61850 etc. For more details about these communication protocols, see the correlative standards.

9.3 Network Topoloty

9.3.1 Star Topology

Each equipment is connected with an exchanger via communication cable, and thereby it forms a star structure network. Dual-network is recommended in order to increase reliability. SCADA is also connected to the exchanger and will play a role of master station, so the every equipment which has been connected to the exchanger will play a role of slave unit.

9.3.2 PRP Topology

This network topoloty is supported by the device.

9.3.3 RSTP Topology

This network topoloty is supported by the device.

9.4 IEC61850Protocol

9.4.1 Overview

The IEC 61850 standard is the result of years of work by electric utilities and vendors of electronic equipment to produce standardized communications systems. IEC 61850 is a series of standards describing client/server and peer-to-peer communications, substation design and configuration, testing, environmental and project standards. The complete set includes:

- IEC 61850-1: Introduction and overview
- IEC 61850-2: Glossary
- IEC 61850-3: General requirements
- IEC 61850-4: System and project management

- IEC 61850-5: Communications and requirements for functions and device models
- IEC 61850-6: Configuration description language for communication in electrical substations related to IEDs
- IEC 61850-7-1: Basic communication structure for substation and feeder equipment– Principles and models
- IEC 61850-7-2: Basic communication structure for substation and feeder equipment Abstract communication service interface (ACSI)
- IEC 61850-7-3: Basic communication structure for substation and feeder equipment– Common data classes
- IEC 61850-7-4: Basic communication structure for substation and feeder equipment– Compatible logical node classes and data classes
- IEC 61850-8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3
- IEC 61850-9-1: Specific Communication Service Mapping (SCSM) Sampled values over serial unidirectional multidrop point to point link
- IEC 61850-9-2: Specific Communication Service Mapping (SCSM) Sampled values over ISO/IEC 8802-3
- IEC 61850-10: Conformance testing

These documents can be obtained from the IEC (http://www.iec.ch). It is strongly recommended that all those involved with any IEC 61850 implementation obtain this document set.

9.4.2 Communication Profiles

The PRS-7000 series relay supports IEC 61850 server services over TCP/IP communication protocol stacks. The TCP/IP profile requires the PRS-7000 series to have an IP address to establish communications.

9.4.2.1 MMS protocol

IEC 61850 specifies the use of the Manufacturing Message Specification (MMS) at the upper (application) layer for transfer of real-time data. IEC 61850-7-2 abstract services and objects are mapped to actual MMS protocol services in IEC61850-8-1.

9.4.2.2 Client/server

The core ACSI defined by IEC 61850 is mapped to manufacturing message specifications (ISO 9506-1, ISO 9506-2). This is a connection-oriented type of communication. The connection is initiated by the client, and communication activity is controlled by the client.

The rules to map the ACSI services supported by PRS-7000 series units to the MMS are as shown in following table

Table 9-1 Mapping of ACSI to MMS service

ACSI		MMS
Sonver model		GetNameList (read name list
Server model	GetServerDirectory (read server directory)	service)
	Associate (associate)	Initiate (initial service)
Associate model	Abort (abnormal abort)	Abort (abort service)
	Release (release)	Conclude (end service)
	GetLogicalDeviceDirectory (read logic device	GetNameList (read name list
Logic device model	directory)	service)
	GetLogicalNodeDirectory (read logic node	GetNameList (read name list
Logic node model	directory)	service)
	GetAllDataValues (read all data value)	Read (read service)
	GetDataValues (read data value)	Read (read service)
	SetDataValues (set data value)	Write (write service)
		GetVariableAccessAttribute
Data model	GetDataDirectory (define read data)	(read variable access attribute
Data moder		service)
		GetVariableAccessAttribute
	GetDataDefinition (read data directory)	(read variable access attribute
		service)
	GetDataSetValue (read data set value)	Read (read service)
	SetDataSetValue (set data set value)	Write (write service)
	Overste Date Sat (astablish date ast)	DefineNamedVariableList
		(define named variable list service)
Data set model	DeleteDataSet (delete data set)	DeleteNamedVariableList
		(delete named variable list service)
		GetNamedVariableListAttribute
	GetDataSetDirectory (read data set directory)	(read named variable list attribute
		service)
Substituting model	SetDataValues (set data value)	Write (write service)
	GetDataValues (read data value)	Read (read service)
	SelectActiveSG (select activating setting group)	Write (write service)
	SelectEditSG (select edit setting group)	Write (write service)
	SetSGValues (set setting group value)	Write (write service)
Setting group control	ConfirmEditSGValues (confirm editting setting	Write (write service)
block model	group value)	while (while service)
	GetSGValues (read setting group value)	Read (read service)
	GetSGCBValues (read setting group control block value)	Read (read service)
	Report (report)	InformationReport (information report)
Buffered report control	GetBRCBValues (read buffered report control	
block	block value)	Read (read service)
	SetBRCBValues (set buffered report control block	Write (write service)

	value)		
Non-buffered report control block	Report (report)	InformationReport (information report)	
	GetURCBValues (read non-buffered report control		
	block value)	Read (read service)	
	SetURCBValues (set non-buffered report control		
	block value)	while (while service)	
Log control block model	GetLCBValues (read log control block value)	Read (read service)	
	SetLCBValues (set log control block value)	Write (write service)	
	QueryLogByTime (query log by time)	ReadJournal (read log service)	
	QueryLogAfter (query log after)	ReadJournal (read log service)	
	GetLogStatusValues (read log status values)	Read (read service)	
	GetGoCBValues (read GOOSE control block	Road (read convice)	
GOOSE	values)	Read (read service)	
	SetGoCBValues (set GOOSE control block		
	values)	while (while service)	
GSSE	GetGsCBValues (read GSSE control block values)	Read (read service)	
	SetGsCBValues (set GSSE control block values)	Write (write service)	
	GetMSVCBValues (read MSV control block	Pood (road convice)	
MSV	values)	Read (read service)	
	SetMSVCBValues (set MSV control block values)	Write (write service)	
	GetUSVCBValues (read USV control block	Bood (rood convice)	
USV	values)	Read (read service)	
	SetUSVCBValues (set USV control block values)	Write (write service)	
	Select (select)	Read (read service)	
	SelectWithValue (select with value)	Write (write service)	
Control model	Cancel (cancel)	Write (write service)	
Control moder	Operate (operate)	Write (write service)	
	CommandTermination (command termination)	InformationReport (information report)	
	TimeActivatedOperate (time activated operation)	Write (write service)	
		FileOpen, FileRead, FileClose	
	GetFile (read file)	(file open, file read and file close	
File transmission		service sequence)	
model	SetFile (set file)	ObtainFile (obtain file service)	
	DeleteFile (delete file)	FileDelete (file delete service)	
	GetFileAttributeValues (read file attribute values)	FileAttributes (file attribute service)	

9.4.2.3 Peer-to-peer

This is a non-connection-oriented, high speed type of communication usually between substation equipment, such as protection relays, intelligent terminal. GOOSE is the method of peer-to-peer communication.

9.4.2.4 Substation configuration language (SCL)

IEC 61850 has defined a series of configuration documents (ICD, IID, SCD, SED, CID), which are prepared with SCL (substation configuration language). The SCL includes the following:

Head: it is used to identify a SCL configuration document and its version, and also to designate relevant names into the mapping option of information (FuntionName)

Substation: it is used to describe the function structure of the substation, and mark the primary devices and their electrical connection relationship.

IED: intelligent electronic device description, to describe the IED pre-configuration, access points, logic devices, logic nodes, data objects, etc.

DataTypeTemplate: the instantiated logic node type, and logic node type is a specific sample of logic node data.

The purpose to define and use SCL is: the description of intelligent electronic device capability and description of substation automation system can be exchanged in a compatible manner between the intelligent electronic device management tools and system configuration tools provided by different manufacturers.

9.4.2.5 GOOSE

GOOSE service is used to transmit fast messages, such as trip and switch position.

The GOOSE service adopts the pear-to-pear transmission, and is classified as GOOSE sending and GOOSE receiving.

9.4.2.6 GOOSE sending mechanism

GOCB is automatically enabled when the unit is powered on, when all status of the unit are determined, it performs sending according to the data set shifting mode, to quickly send the initial status of the own GOOSE information;

The time interval for immediate re-sending after shift of GOOSE message is the MinTime parameter (i.e. T1); the "timeAllowedtoLive" parameter in GOOSE message is 2 times the "MaxTime" configuration parameter (i.e. 2T0);

9.4.2.7 GOOSE receiving mechanism

The GOOSE receiving buffer zone of the unit receives the new GOOSE messages, after a strict check of the relevant parameters of GOOSE messages, the receiving side first compares if the StNum (status number) of the newly received frame and that in the GOOSE message of the previous frame are equal. If the StNum of the two frames of GOOSE messages are equal, the SqNum (sequence number) of the two frames of GOOSE messages are compared, if the SqNum of the newly received GOOSE frame is bigger than the SqNum of the previous frame, this GOOSE message is discarded, otherwise the data of the receiving side is updated. If the two GOOSE messages have different StNum, the data of the receiving side are updated;

When receiving GOOSE messages, the PRS-7000 series unit strictly checks if parameters such as AppID, GOID, GOCBRef, DataSet and ConfRev are matching;

In receiving GOOSE messages, it will take into account cases of communication interruption of fault with issuing unit, when the GOOSE communication is interrupted or the configured versions are not identical, the received GOOSE message should maintain the status before interruption.

9.4.3 Data set and control block

PRS-7000 series devices support real-time sending of data. The data objects requiring real-time monitoring are configured into data set, and the data set are associated to report control and GoCB, so that the change information of monitored objects can be sent in real-time to the background via the report service and GOOSE.

9.4.3.1 Data set

PRS-7000 series devices usually configure data sets in advance in the ICD document, such as protection event, protection digital input and protection measurement. The SCT (system configuration tool) can also add, delete and modify data set configuration according to the needs of existing actual projects.

A data set is an ObjectReference set of orderly DATA or DataAttrubutes. It usually include the following attributes:

- IdInst: the logic device containing the DATA or DataAttrubutes;
- InClass: the logic node class containing the DATA or DataAttrubutes;
- InInst: the logic node instant number containing the DATA or DataAttrubutes;
- Fc: all attributes of functional constraint required by DATA or DataAttrubutes;
- doName: name of DATA, or name belonging to the DataAttrubutes;
- daName: attribute name.

9.4.3.2 Report control block

IEC 61850 has defined the report control block, to describe how the changed information is actively submitted via report service when the data set members have changed. Report control blocks are classified into buffered report control block and non-buffered report control block. In case of communication interruption, the newly occurring event will still be stored as buffered report control block, otherwise, it is a non-buffered report control block.

The report control block performs the control of report submission via a series of attribute configurations. Specifically, it has the following important attributes:

RptID

The identity of report control block, globally unique within the scope of LD, if the RptID of the RCB is set by the client side as NULL, in the report submitted by device, RptID is full path.

OptFlds

The option fields OptFlds contained in the report. The PRS-7000 series device supports the following option fields:

- Bit 1: Sequence-number
- Bit 2: Report-time-stamp
- Bit 3: Reason-for-inclusion
- Bit 4: Data-set-name
- Bit 5: Data-reference
- Bit 7: EntryID (for buffered reports only)
- Bit 8: Conf-revision
- Bit 9: Segmentation

When an item is set as 1, the corresponding information will be embodied in the report.

DatSet

The name of the data set associated with the report control block and under the same LD. The members of this data set are monitored by this report control block.

BufTm

Buffer time, it is the buffer time internally prompted by the dchg (data change), qchg (quality change), and dupd (data updating) of the rcb, in ms, with missing value as 0, indicating not using the buffer time attribute, and the maximum value is 1h.

The timer is started when the first internal prompt arrives, after it is reached in timer, all event messages within the buffer time are packed into one report, and submitted to the client side.

When the second change of the same signal arrives in the buffer time, the buffered report is submitted immediately, and the timer is booted again, to start again the subsequent internal prompt buffer.

TrgOps

Trigger option, used to filter the conditions for sending reports. PRS-7000 supports the following trigger options:

- *Bit 1:* Data change
- Bit 2: Quality change
- Bit 3: Data updating (the service follow-up of Ed2)
- Bit 4: Completeness period
- Bit 5: Total call

IntgPd

Completeness period time, to be set by the client side. After successful device enabling (RptEna = TRUE), the timer is started immediately, and after the expiration of completeness period time, the current values of all members in the data set associated by the report are packed and submitted.

The completeness period time set as 0 means the completeness submission function is not enabled.

GI

Total call is launched by the client side with initiative. After the report is enabled, the client side takes initiative to issue GI = TRUE, then the device immediately submit all data values in the current data set.

PurgeBuf

Purge buffer. When the client side sets PurgeBuf = TRUE, all report entries in the IED buffer report are purged.

When the client side modifies RptID, DataSet, BufTime, TrgOps, IntgPd, the device will automatically set purging buffer reports, equivalent to setting PurgeBuf = TRUE.

9.4.3.3 GOOSE control block

The fast messages of the PRS-7000 series device is transmitted via GOOSE, and the transmission characteristics of GOOSE is controlled by the GOOSE control block (GoCB). GoCB has the following important characteristics:

App ID

The application ID, representing the logic device where the GoCB is located. The missing value of App ID is the Object Reference of GoCB.

DatSet

The values of members of the data set associated by GoCB are transmitted by GOOSE.

9.4.4 Logic nodes and data modeling

9.4.4.1 Logic nodes

IEC 61850 7-4 has defined a series of logic nodes, which constitute the minimum communication unit of intelligent electronic devices as classified by functions. There are three types of logic nodes used by the PRS-7000 series unit: management logic nodes (LLN0), physical device logic nodes (LPHD) and application function logic nodes.

LLN0

Management logic nodes provide the management and control functions for all logic nodes and data objects within the logic devices. Some common services are modeled in LLNO, such as setting group control block (SGCB), GOOSE control block (GoCB), SV control block (MsvCB), reported control block (BRCB and URCB) and log control block (LCB); some common data objects are modeled in this node, such as Loc, to represent the local and remote operation enabling of the unit, and the based function VEBI and common settings; some data objects represent the meaning of the whole logic device, such as Beh, it is jointly formed by the Beh value of all logic nodes in the logic device, to represent the behavior and status of the whole logic device.

LPHD

CYG

It represents the information of physical devices, including the device manufacturer, unit model, software version, unit serial No., if it has an agency and the device health status. In this logic node, it is also extended to include device information such as name of protected device and unit time calibration method.

Application function logic nodes

- Application function logic nodes include when classified by functions:
- A: automatic control logic nodes
- C: monitoring related logic nodes, such as CSWI
- G: general purpose function logic nodes, such as GGIO, GAPC
- I: filing related logic nodes,
- M: measurement and metering related logic nodes, such as MMXU
- P: protection function logic nodes, such as PDIF, PDIS, PTOC, PTRC
- R: protection related functional logic nodes, such as RREC, RBRF
- S: sensors, monitoring
- T: instrument transducer logic nodes, such as TVTR, TCTR
- X: switching device logic nodes, such as XCBR, XSWI
- Y: power transformer and related function logic nodes

PRS-7000 series unit uses the corresponding logic nodes according to the functions selected by user. For the corresponding logic nodes, please refer to the instruction manual for unit of the specific model.

9.4.4.2 Data object

IEC 61850 7-3 defined common data types, including:

- Status information: such as SPS, INS, ACT, ACD
- Measured value information: such as MV, CMV, WYE
- Controllable status information: such as SPC, INC, DPC
- Status set values: such as SPG, ING
- Analog set values: such as ASG
- > Description information: such as LPL, DPL

The PRS-7000 series unit uses the above common data types, and instantiate the specific data objects according to the need of application functions, to meet the need of application functions. There are the following common data objects in all logic nodes (except for LPHD):

Mod

The model of logic node. It represents the behavior mode of the logic node, such as normal, testing and blocked.

Beh

The performance of the logic node, representing the current performance status of the logic node, the value of the same Mod is read-only and cannot be modified.

Health

Health status, it reflects the status of the relevant software and hardware of the logic node.

NamPlt

The name plate of the logic node

9.5 DNP3.0 Protocol

9.5.1 Overview

The descriptions given here are intended to accompany this relay. The DNP3.0 protocol is not described here; please refer to the DNP3.0 protocol standard for the details about the DNP3.0 implementation. This manual only specifies which objects, variations and qualifiers are supported in this relay, and also specifies what data is available from this relay via DNP3.0.

The DNP3.0 communication uses the Ethernet ports (electrical or optical) at the rear side of this relay.

9.5.2 Link Layer Functions

Please see the DNP3.0 protocol standard for the details about the linker layer functions.

9.5.3 Transport Functions

Please see the DNP3.0 protocol standard for the details about the transport functions.

9.5.4 Application Layer Functions

9.5.4.1 Function Code

2.1

Table 9-2 Function Code

Function Code	Function
0 (0x00)	Confirm
1 (0x01)	Read
2 (0x02)	Write
3 (0x03)	Select
4 (0x04)	Operate
5 (0x05)	Direct Operate
6 (0x06)	Direct Operate No Acknowledgment
13 (0x0D)	Cold Restart
14 (0x0E)	Warm Restart
20 (0x14)	Enable Unsolicited Responses
21 (0x15)	Disable Unsolicited Responses
22 (0x16)	Assign Class
23 (0x17)	Delay Measurement

9.5.4.2 Communication Table Configuration

This relay now supports 3 Ethernet clients and 2 serial port clients. Each client can be set the DNP related communication parameters respectively and be selected the user-defined communication table.

The user can configure the user-defined communication table through the PRS IED Studio configuration tool auxiliary software. The object groups "Binary Input", "Binary Output", "Analog Input" and "Analog Output" can be configured according to the practical engineering demand.

9.5.4.3 Analog Input and Output Configuration

To the analog inputs, the attributes "deadband" and "factor" of each analog input can be configured independently. To the analog outputs, only the attribute "factor" of each analog output needs to be configured. If the integer mode is adopted for the data formats of analog values (to "Analog Input", "Object Variation" is 1, 2 and 3; to "Analog Output", "Object Variation" is 1 and 2.), the analog values will be multiplied by the "factor" respectively to ensure their accuracy. And if the float mode is adopted for the data formats of analog values will be sent directly.

The judgment method of the analog input change is as below: Calculate the difference between the current new value and the stored history value and make the difference value multiply by the "factor", then compare the result with the "deadband" value. If the result is greater than the "deadband" value, then an event message of corresponding analog input change will be created. In normal communication process, the master can online read or modify a "deadband" value by reading or modifying the variation in "Group34".

9.5.4.4 Binary Output Configuration

The remote control signals, logic links and external extended output commands can be configured into the "Binary Output" group.

To an extended output command, if a selected command is controlled remotely, this command point will output a high ~ level pulse. The pulse width can be decided by the "On ~ time" in the related "Binary Command" which is from the DNP3.0 master. If the "On ~ time" is set as "0", the default pulse width is 500ms.

9.5.4.5 Class Configuration

If the DNP3.0 master calls the Class0 data, this relay will transmit all actual values of the "Analog Input", "Binary Input" and "Analog Output". The classes of the "Analog Input" and "Binary Input" can be defined by modifying relevant settings. In communication process, the DNP3.0 master can online modify the class of an "Analog Input" or a "Binary Input" through "Function Code 22" (Assign Class).

9.6 IEEE 1588-2008 Protocol

9.6.1 Overview

The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout LAN. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems.

9.6.2 Time Synchronization

Time synchronization of the device support IEEE 1588-2008 Protocol via ethernet interface or optical interface.

CYG

10 Commissioning

10.1 General

This part contains a brief description about how to verify the function, including functional verification items, functional verification methods and more.

With high degree of self-checking, any fault with the internal hardware and software can be diagnosed by the device itself. So for the commissioning, only hardware interface and the application-specific software function are necessary to verify.

Before carrying out commissioning, users should pay close attention to the safety, technical data and the ratings on the front panel label.

10.2 Safety Instructions

This section contains some safety information, some of which are given warning signs to avoid personal injury or equipment damage, to prompt the user to be careful.

10.2.1 Safety Identification

Electrical warning icon indicating a danger of electric shock.

Notice icon, indicating important information or warnings involved in the article. This icon may indicate a danger of software, equipment or property damage.

Information icons alert readers to important facts or conditions.

Prompt staff not to forget the dangers of static electricity and make prevention.

Forbid to energize the device while not grounded, to avoid endangering the personal safety due to electrical insulation damage!

Although these markings warn of the danger, it is important to note that operating damaged equipment under certain operating conditions can result in reduced process performance and may result in death or personal injury. Therefore, be sure to fully comply with all warnings and cautions.

10.2.2 Safety Identification Examples

For the various safety instructions given in the previous section, the following are examples

10.2.2.1 Warning Signs

Do not touch the circuit during operation. There may be fatal voltage and current.

Strict compliance with safety regulations. Work in high voltage environment need to be serious to avoid personal injury or equipment damage.

When measuring signals in an open circuit, remember to use a properly isolated test clamp that can have fatal voltages and currents.

During normal operation, never disconnect or connect the wires or connectors connected with the terminals. It may cause deadly dangerous voltage and current, may also interrupt the operation of the equipment, damage the terminals and the measuring circuit.

Never disconnect the secondary winding of the current transformer. Current transformers that operate when the secondary windings are open will create strong potentials that may

damage the transformers and may cause personal injury.

When the protective device is energized, never plug the module. Hot plug may damage the protection device and measuring circuit, may also result in injury.

10.2.2.2 Caution Signs

Do not connect the protective shell to the live wire, charging the shell may damage the internal circuit.

During installation and commissioning, be careful not to get an electric shock if you touch the leads and connecting terminals

10.2.2.3 Notice Signs

Do not modify the settings in the running protection device. After modify the setting, verify it according to the rules.

10.2.2.4 Anti-static Signs

Remember to avoid touching circuits, including electronic circuits, and the device may be damaged if subjected to static electricity. Electronic circuits may also contain deadly high voltages.

Remember to use a certified conductive bag when transporting the module. Remember to connect the anti-static wristband to the ground when handling the module and remember to operate it on a suitable anti-static surface. Static electricity discharge may cause damage to the module.

Remember to wear the anti-static wristband connected to the ground when replace the module, Static electricity discharge may damage the module and protection device.

10.2.2.5 Earthing Signs

Regardless of operating conditions, remember to connect the protective device to the earth, also needed for special occasions such as testing, demonstrating and off-line configuration on the desk. Operation of the protective device without proper earthing may

damage the protective device and the measuring circuit and may also cause an injuring accident.

10.2.2.6 Information Signs

Effective value and step of settings explanation: The protection setting supports as much as 6 significant figures, of which the decimal point occupies one digit (the highest digit can not be a decimal point). The minimum setting step is 0.01.

10.3 Commission Tools

10.3.1 Instrumentation and Meters Notice:

- Instruments, meters must pass the inspection, and within the validity of the inspection
- instruments, meters should be accurate level higher than the seized equipment related indicators 2 to 4 levels.

10.3.2 Tools Requirement:

- Relay protection testing devices: Multifunctional dynamic current and voltage injection test set with interval timer.
- Regulative DC power: DC output can be adjustable within 0 ~ 240V.
- Accuracy meter: support three-phase voltage, three-phase current output.
- Tong-type ammeter
- Multifunction phase meter
- Multimeter
- Megger
- Laptop: with appropriate software
- Network cable
- Optical power meter
- EIA RS-485 to EIA RS-232 converter

10.4 Commission Preparation

10.4.1 Basic Knowledge

When commissioning this device for the first time, sufficient time should be allowed to become familiar with the manual to understand the basic operation, protection principles, and related basic performance of the devices as much as possible. If find any doubt in the process, consult the manufacturer's field service personnel or technical support staff of our company.

Alternatively, if a laptop is available together with suitable setting software (such as PRS IED Studio software), the menu can be viewed one page at a time to display a full column of data and text. This PC software also allows settings to be entered more easily, saved to a file on disk for future reference or printed to produce a setting record. Refer to the PRS IED Studio Instruction

manual for details.

If the application-specific settings have been applied to the relay prior to commissioning, it is advisable to make a copy of the settings so as to allow them restoration later. This could be done by extracting the settings from the relay itself via printer or manually creating a setting record.

10.4.2 Operation Preparation

Check the printer wiring is normal, the print paper is ample, in order to print the test settings, version, and a variety of experiment data.

Attention! The device should be checked before power on. The appearance should be no damage. The module is plugged and fastened, and the insulation of the DC voltage circuit meets the specified requirements. The indicators can refer to the commissioning record of the device.

Attention! Disconnect the external AC circuit of the cubicle before the test to avoid causing a safety accident, which will cause serious damage to the construction workers on

Attention! When you need to plug and unplug the device module, you should ensure the device is powered off and make the anti-static measures to prevent the module damage or performance degradation.

Attention! Temporarily open or shorted terminals should be well documented for reliable recovery after the end of the test.

If it has been necessary to disconnect any of the external wiring from the protection in order to perform any of the following tests, it should be ensured that all connections are replaced in accordance with the relevant external connection or scheme diagram. Confirm current and voltage transformer wiring.

10.5 Product Checks

These product checks cover all aspects of the relay which should be checked to ensure that it has not been physically damaged prior to commissioning, is functioning correctly and all input quantity measurements are within the stated tolerances.

10.5.1 Document Check

Document acceptance check include: protection inspection and factory test reports, certificates, drawings, technical manual of related equipment.

10.5.2 Appearance Inspection

Check the front and back of the cubicle of various electrical components, terminal blocks, hard-switch. All should be marked with the number, name, application and operating position. The marked handwriting should be clear, neat, and not easy to bleach.

The device mark inspection shall include the product type, name, manufacturer's name and trademark, date of manufacture and serial number, safety mark, etc., the mark and installation location shall be consistent with the design drawings.

Inspect the surface of the device. There shall not be scratches, bumps, groove marks, rust, deformation and other defects that affect the quality and appearance;

Check the device panel keyboard is complete, flexible operation, the LCD is clear, the indicator shows normal;

Uncharged metal part of the device should be connected as one, and reliable grounding;

Check the cubicle shell of the device must be grounded reliably;

10.5.3 Insulation Check

Disconnect the weakelectric link with other devices and short circuit the AC voltage circuit terminal, AC current circuit terminal, DC circuit terminal and signal circuit terminal inside the cubicle terminal block, and measure the insulation resistance value using the tester whose open circuit voltage is 500V. Insulation should meet the following requirements:

Device independent circuit and exposed conductive parts, 500V megger insulation resistance measured value should be no less than $100M\Omega$;

Between electrically disconnected independent circuits, 500V megger insulation resistance measured value should be no less than $100M\Omega$;

After the insulation test is completed, make sure that all external wiring is properly connected.

10.5.4 External Wiring Check

External protection wiring should be consistent with the design drawings; Internal and external wiring on the terminal block and cable marking on it is correct, complete, and consistent with the drawings; Secondary circuit wiring should be neat and beautiful, solid and reliable;

All secondary cables and terminal blocks wiring connection should be solid. Cable mark should be complete, correct and clear;

The correct mark should be attached to the optical fiber (including optical cable, pigtail, jumper) and both ends of the device port. Such fiber-optic annotation should include the optical fiber number, destination. The starting point of the fiber should indicate the cubicle number. The content of the port mark should include the port number and destination. The starting point of the port should include the cubicle number, switch number and port number.

10.5.5 Test Category

The following tests are necessary to ensure the normal operation of the equipment before it is first put into service.

These tests are performed for the following hardware to ensure that there is no hardware defect. Defects of hardware circuits other than the following can be detected by self-monitoring when the power supply is energized.

- User interfaces test
- Binary input circuits and output circuits test

- AC input circuits test
- Function tests

These tests are performed for the following functions that are fully software-based. Tests of the protection schemes and fault locator require a dynamic test set.

- Measuring elements test ٠
- Timers test
- Metering and recording test •
- Conjunctive tests

The tests are performed after the relay is connected with the primary equipment and other external equipment.

- On load test.
- Phase sequence check and polarity check.

10.6 With the Relay Energized

Check that the input range of the external power supply should meet the power requirements of the "technical data" section within the permissible power supply input voltage range.

Attention! All external circuits connected to the unit must be checked to ensure correct installation before the unit is powered on or the test procedure started.

10.6.1 LCD Display Check

After the device is powered on, the LCD will be lit. After the device is initialized, if the device is in normal operation, the LCD displays the status of the main single line diagram.

Attention! If the device is in the alarm state after power-on, the LCD displays the alarm status information. At this point you can refer to the "Supervision" section to analyze the cause of the alarm and treatment.

10.6.2 Date and Time

If the time and date is not being maintained by substation automation system, the date and time should be set manually.

Set the date and time to the correct local time and date using menu item "Clock".

For devices using IRIG-B (DC) time code and SNTP, IEEE 1588 time synchronization, you can verify the timing accuracy by modifying the clock setting of the device. For PPM, PPS time synchronization system, through the time synchronization binary input check.

10.6.3 Light Emitting Diodes (LEDs)

The device has two lights that can not be defined. the two lights are as follows:

"Healthy": indicates that the device is in normal operation, no software, hardware failure. When the

"healthy" light goes out, it indicates a serious problem with the device, resulting in the device not functioning properly.

"Alarm": indicates that there are some alarm events on the device. On this condition, you can analyze the cause of the alarm and how to handle it by checking the "supervision" section of the manual.

The rest of the indicators are configurable indicators.

If the indicator of the device is set to the self-retaining state, if the signal is not reset before the latest power-off, the signal will continue to be triggered when the device is powered on again, and the indicator can be reset by resetting operation. It is likely that alarms related to voltage transformer supervision will not reset at this stage.

10.6.3.1 Test the HEALTHY and ALARM LEDs

Apply the rated power supply and check that the "HEALTHY" LED is lighting in green. We need to emphasize that the "HEALTHY" LED is always lighting in operation course except that this device finds serious errors in it.

Produce one of the abnormal conditions listed in Chapter 4, the "ALARM" LED will light in yellow. When abnormal condition reset, the "ALARM" LED extinguishes.

10.6.3.2 Test the Other LEDs

Test the other LEDs according to the configuration of the LEDs (through the PRS IED Studio software). If the conditions which can turn on the selected LED are satisfied, the selected LED will be on.

10.6.4 Test the AC Current Circuit

Attention! The wiring must be checked in strict accordance with the AC current connection drawings provided.

The purpose of this test is to check whether the wiring of the AC circuit in the cubicle is correct and whether the sampling precision meets the requirements. The sampling accuracy and polarity of the device can be checked throughsourcing rated AC current at the AC current input terminal on the back of the cubicle.

Protection current measurement accuracy requirement shall be no higher than 1% or 0.02In. However an additional allowance must be made for the accuracy of the test equipment being used.

Apply current equal to the current transformer secondary winding rating to each currenttransformer input in turn, see the following table, checking the magnitude using a multimeter/test set readout. The corresponding reading can then be checked in the relays menu.

Table 10.6-	Current channel	checkout
-------------	-----------------	----------

Group No.	ltem	Input Value	Input Angle	Display Value	Display Angle
Three-phase current 1	la				

Group No.	Item	Input Value	Input Angle	Display Value	Display Angle
	lb				
	lc				
	la				
Three-phase current 2	lb				
	lc				
	la				
Three-phase current	lb				
	lc				
Residual current 1	310				
Residual current 2	310				
Residual current	310				

10.6.5 Test the AC Voltage Inputs

Attention! The wiring must be checked in strict accordance with the AC voltage connection drawings provided.

The purpose of this test is to check whether the wiring of the AC voltage in the cubicle is correct and whether the sampling precision meets the requirements. The sampling accuracy and polarity of the device can be checked throughsourcing rated AC voltage at the AC voltage input terminal on the back of the cubicle .

Protection voltage measurement accuracy requirement shall be no higher than 1% or 0.02UnHowever an additional allowance must be made for the accuracy of the test equipment being used.

Apply voltage equal to the voltage transformer secondary winding rating to each voltagetransformer input in turn, see the following table, checking the magnitude using a multimeter/test set readout. The corresponding reading can then be checked in the relays menu.

Group No.	ltem	Input Value	Input Angle	Display Value	Display Angle
	Ua				
Three-phase voltage 1	Ub				
	Uc				
	Ua				
Three-phase voltage 2	Ub				
	Uc				
	Ua				
Three-phase voltage	Ub				
	Uc				
Residual voltage 1	3U0				
Residual voltage 2	3U0				
Residual voltage	3U0				

Table 10.6-2	2 Voltage	channel	checkout
--------------	-----------	---------	----------

10.6.6 Test the Binary Inputs

The purpose of this test is to check whether the connection of binary input circuit is correct. During the test, the voltage applied to the binary input terminal must be within the allowable operating range.

Each binary input status can be checked by the device LCD panel, and the status "1" indicates that the binary input has been applied with an input voltage, and the opening status becomes "0" when the input voltage disappears.

Table 10.6-3 Binary inputs checkout

Teminal N0.	Signal Name	States on LCD	Correct?

10.6.7 Test the Binary Onputs

The purpose of this test is to check whether the binary output circuit connection is correct. According to the protection logic of the device and various kinds of signal output logic, stimulate a fault condition. The corresponding relay contact of the device shall be operated with the corresponding action or alarm signal.

10.6.8 Protection Function Checks

The purpose of this experiment is to verify the correctness of the protection logic. Protection function tests generally include the following types:

- Impedance protection test
- Current protection test
- Voltage protection test
- Frequence protection test
- Secondary system supervision function test

For details on how to implement the protection logic function, refer to "Operation Theory"

10.6.9 Printing Function Checks

Check the printer cable is connected properly before printing, printing paper is complete. Printing method can be set to "automatic" or "manual". When set to automatic printing, the device will print protection action event, self- checking information and other records initiatively in real time.

10.6.10 On-load Checks

The objectives of the on-load checks are:

• Confirm the external wiring to the current and voltage inputs is correct.

- Measure the magnitude of on-load current and voltage (if applicable).
- Check the polarity of each current transformer.

10.6.11 Final Checks

After the above tests are completed, remove all test or temporary shorting leads, etc. Restore the original correct wiring. Tighten the secondary circuit terminals, especially for the current terminals, circuit breaker closing and opening, operating power supply circuit.

If a test block is installed, remove the test plug and replace the cover so that the protection is put into service.

Ensure that all event records, fault records, disturbance records and alarms have been cleared and LED's has been reset before leaving the protection.

Ensure that the protection has been restored to service.

11 Installation

11.1 General

Design and installation chapterissuitfor design, installation, commissioning and maintenance staff.Designers must have a wealth of experience in electrical design.The installer must have the basic knowledge of electronic equipment and cubicledrawingreading.Commissioning and maintenance personnel must have extensive experience in operatingprotective equipment and test equipment.The equipment must be shipped, stored and installed with the greatest care.

Choose the place of installation such that the communication interface and the controls on the front of the device are easily accessible.

Air must circulate freely around the equipment. Observe all the requirements regarding place of installation and ambient conditions given in this instruction manual.

Take care that the external wiring is properly brought into the equipment and terminated correctly and pay special attention to grounding. Strictly observe the corresponding guidelines contained in this section.

11.2 Safety Instructions

Warning!Onlyinsert or withdraw a module while the device power supply is switched off. To this end, disconnect the power supply cable that connects with the power supply module.

Attention! A module can only be inserted in the reserved slot. Components can be damaged or destroyed by inserting module in a wrong slot.

The basic precautions to guard against electrostatic discharge are as follows:

- Should boards have to be removed from this relay installed in a grounded cubicle in an HV switchgear installation, please discharge yourself by touching station ground (the cubicle) beforehand.
- Only hold electronic boards at the edges, taking care not to touch the components.
- Only works on boards that have been removed from the cubicle on a workbench designed for electronic equipment and wear a grounded wristband.
- Always store and ship the electronic boards in their original packing. Place electronic parts in electrostatic screened packing materials.

11.3 Checking the Shipment

Vehicles, trains, ships and all other means of transport are available, but to prevent snow and rain, shock, impact and collision, to ensure product packaging integrity.

Check that the consignment is complete immediately upon receipt. Notify the nearest CYG

SUNRI CO., LTD. Company or agent, should departures from the delivery note, the shipping papers or the order be found.

Visually inspect all the material when unpacking it. When there is evidence of transport damage, lodge a claim immediately in writing with the last carrier and notify the nearest CYG SUNRI CO., LTD.Company or agent.

> Unpacking and checking procedures

- 1. Remove the shipping package.
- 2. Before unpacking, you should first check the equipment packaging intact, whether there are signs of serious collision and phenomenonsthat equipment in the box may be damaged. If found abnormal, it is recommended to take pictures as a record, confirm and contact with the manufacturerat first time.
- 3. When unpacking, you should use a claw, and pull out the nails, and then pry off the box lid; If the crowbar is used, never take the device as a fulcrum, and it is forbidden to stick into the wooden box carelessly with the crowbar.Open the box with the greatest care and avoid excessive vibration.
- 4. Check the appearance of the device is intact.
- 5. Check the delivery list. Check the device certificate of competency, supporting documents, attachments, spare parts, etc. are consistent with the order requirements, whether the packing list and the type, name, quantity, etc. are consistent and complete. If correct, sign the confirmation.
- 6. Manufacturerdocuments and spare parts should be assigned to personal keeping and registration.
- 7. If any abnormalities occur during unpacking, feedback CYG SUNRI CO., LTD. Company or agent at the first time, so as to avoid the follow-up of unclear responsibilities.

If the equipment is not going to be installed and commissioned immediately, store all the parts in their original packing in a clean dry place and keep air circulation. And to prevent the intrusion of various harmful gases, non-corrosive items stored in the same place.

11.4 Material and Tools Required

The necessary mounting kits will be provided, including screws, pincers and assembly instructions.

A suitable drill and spanners are required to secure the cubicles to the floor using the plugs provided (if this relay is mounted in cubicles).

11.5 Device Location and Ambient Conditions

The mechanical and electrical environmental conditions at the installation site must comply with the requirements of "Chapter 2 Technical Data". Avoid adverse conditions caused by the environment:

- Avoid installing in wet, dark and other places likely to cause damp and rust. If in unavoidable rainy area, install the device in a higher position;
- If the area is an earthquake prone area, fix the protection devicetightly;
- If there is a lot of dust in the installation place, clean it before installing.

The place of installation should permit easy access especially to front of the device, i.e. to the human machine interface of the equipment. There should also be free access at the rear of the equipment for additions and replacement of electronic boards.

11.6 Mechanical Installation

In the case of equipment supplied in cubicles, place the cubicles on the foundations that have been prepared. Take care while doing so not to jam or otherwise damage any of the cables that have already been installed. Secure the cubicles to the foundations.

The device should be firmly fixed in the cubicle (cabinet), and the connecting screws should be tightened. The grounding wire of each device should be connected with the copper grounding busbar inside the cubicle, and reliably connected with the secondary grounding network. Device wiring should be consistent with the wiring diagram requirements.

The devicefeatures a 6Uheight, 1/1 19 "or 1/2 19" widthchassis, integral paneland pluggable functional modules with lock. The device is designed conforming to IEC 60297-3. Embedded Installation as a whole, rear wiring. The current/voltage connector structure are in the same size, and can be expanded, combined flexibly. Installation hole size as below.

Attention! It is necessary to leave enough space top and bottom of the cut-out in the cubicle for heat emission of this relay.

Figure 11.6-1 Dimensions of this relay and the cut-out in the cubicle (unit: mm)

11.7 Electrical Installation and Wiring

11.7.1 TACircuit Connection

According to the wiring diagram of the device, connect the terminalblockofrearAC module with the CT loop using multiple wires, of which the cross-sectional area should be $2.5 \sim 4.0 \text{ mm}^2$.

11.7.2 Power Supply, VT, BI and BO, Signal Wiring

According to the wiring diagram of the device, connect the AC, Phoenix terminal of module and the terminal blockin the cubiclesidewith multiple wires.

DC voltage power supply wiring power +, power - should be distinguish indifferent colors, forexample power + (brown), power - (blue).

Power supply, binary inputs & outputs: stranded conductor, $1.0mm^2 \sim 2.5mm^2$.

AC voltage inputs: stranded conductor, 1.5mm².

Grounding: braided copper cable, 2.5mm² ~ 6.0mm².

For wiresconnected to two points, there should be no jointin the middle, and the wirecoreshould not be damaged. If the wire length is not enough during the process of wiring or rewiring, the worker must replace it. There should be no excess wire in the slot. If it is required to remove the wire, the whole wire must be completely removed.

When wiringtheACterminalofmodule, current and voltage wiresmust adopt 12mmsizecablelug, to avoid loosecontact.Strictly prohibit electric screwdriver, so as to avoid terminals damage.

Attention! Never allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerously high voltage.

11.7.3 Grounding

Use a yellow-green multi-core cable with a cross-section of at least 2.5 mm² to connect the grounded copper bars. The cubicleshould reliably connected to the secondary ground network.

11.7.4 Shielded cable connection

When using a shielded cable, connect the shielded cable to ground and follow the engineering application method. This includes checking of the appropriate grounding point near the device, such as the grounding point inside the cubicleand the grounding point near the measurement source. Ensure a single shield connection a suitable short cross-sectional wire (maximum 10CM) for ground connection.

11.7.5 Install the optical cable

Care should be taken to handle the cable without substantial bending. The minimum curvature radius of the plastic optical fiber is 15 cm and the glass optical fiber is 25 cm. To use the cable clamp, a loose buffer sleeve should be used.

When connecting or removing the optical fiber, pleasetake hold of the connection ends. Do not take the cable. Do not twist, stretch, bend the cable. Invisible damage can increase the attenuation of the fiber and can destroy the communication.

11.7.6 Install the communication cable

When using electrical connections between the protection device and the communication device, or point-to-point electrical connections between the two protection devices, it is important toinstall the cables carefully. Due to the low electrical level of communication signals, the factors

susceptible to noise interference must be considered.

The best way is to use shielded twisted pair(STP), one for each twisted pair and the other for the all twisted pairs for surround shielding. Each signal uses the twisted pair shown in the following figure to shield each individual twisted-pair cable by connecting its internal shielded cable to the device's ground connection or, alternatively, to a device near the signal transmitter Connected, at the receiving end, shielded line let it hang in the air, not connected with the ground. The outer shield surrounding all twisted pairs is physically connected near each end of the equipment.

Cc: communication cable

Lc: lineconnector

Rx: receive signal input

Tx: transmitsignaloutput

Sc: shielded (grounding) connection

11.8 Installationcheck

11.8.1 Checktheinstallation

Check that all terminal screws with external wiring are tightened, the wiring is neat, and all wiring labels are clearly defined.

11.8.2 Confirm the hardware and software version

Hardware and software version information is available on thedevice label. After the device is powered on, the software version can also be checkedthrough the LCD interface.

11.8.3 Devicestart

if confirm that the wiring is correct during the installation check, you can supply device with power and startit.

Configuration file needs to read during device startup process. Itneeds a certain period of timefor the startup process. The startup time is related to the size of configuration file. In general, the startup time is less than 1 minute.

The "HEALTHY" indicator lights up when the unit starts up normally. If a fault is detected during the startup procedure, the "ALARM" indicator is lit and the internal fault code, alarm information can be checked via LEDs.

12 Maintenance

12.1 Maintenance General

A strict and detailed laboratory test is carried out in the development and design of the relay device. All the relay devices are strictly tested according to national or international standards.

The relay device has powerful real-time self-check capability. However, during the long time running of the relay device, there is no real time supervision for the input terminals and output circuits. Therefore, some periodic tests should be done to ensure that the relay is functioning correctly and the external wiring is intact.

The maintenance of the relay device mainly includes the following two conditions:

- Regular testing;
- Failure maintenance

12.2 Regular Testing

Regular testing is to test the normal relay devices in a certain period of time, so as to find potential defects or failures and eliminate hidden dangers to ensure the healthy operation of the devices.

The regular testing cycle depends on a number of factors, such as the environment conditions, the complexity, etc. Advices of CYG are as the following:

- The relay device must be tested for the first time in the first year of operation, mainly including protection logic, AC circuit, tripping circuit and power supply circuit.
- A partial test should be carried out every 3 years, mainly including the inspection of the AC circuit and the tripping circuit.
- An overall test should be carried out every 6 year, mainly including the protection function logic, the AC circuit, the tripping and closing circuit, the power supply circuit.

12.3 Failure Maintenance

Failure maintenance refers to the maintenance of a faulty relay device.

12.3.1 Hardware Failure

- 1) Check whether the hardware is in trouble or not according to the device alarm signal.
- 2) visual check of the device
 - Check whether the device has obvious physical fault
 - If you can find a clear physical fault point of the device, please contact CYG for repair or replacement
- 3) Confirm the scope of the fault
 - Check whether this fault is caused by an external circuit.
 - Carry out the input and output test for the relay device by test instrument.

• If it is determined that the fault belongs to the relay device, please contact CYG for repair or replacement

12.3.2 Software Failure

- 1) Check whether the hardware is in trouble or not according to the device alarm signal.
- 2) Try to restart the device and check if the fault is recoverable if possible.
- 3) If the fault is not recoverable, please contact CYG for repair or replacement

12.4 Replace Failed Modules

If the failure is identified to be in the relay module and the user has spare modules, the user can replace the failed modules recover the protection device.

Repair at the site should be limited to module replacement. Maintenance at the component level is not recommended.

Before replacement, the user should check that the replacement module has an identical module name and hardware type-form as theremoved module. Furthermore, the replaced module should have the same software version. For the replaced analog input module and power supply module, it should be confirmed of the same ratings.

NOTICE!

After replacing modules, it must be checked that the same configuration is set before and after the replacement. If it is not the case, there is a danger of the unintended operation of switchgear taking place or of relay device not runningcorrectly. Persons may also be in danger.

Units and modules must only be replaced while the power supply is switched off and only by appropriately trained and qualified personnel. Strictly observe the basic precautions to guard against electrostatic discharge.

Take anti-static measures such as wearing an earthed wrist band and placing modules on an earthed conductive mat when handling a module. Otherwise, the electronic components may suffer damage. After replacing the main CPU module, check the settings and configurations.

13 Decommissioning and Disposal

13.1 Decommissioning

13.1.1 Switching off

To switch off this relay, break down the cable connected to the power supply module or switch off the external miniature circuit breaker.

13.1.2 Disconnecting cables

Disconnect the cables in accordance with the rules and recommendations made by relational department.

DANGER!

Before disconnecting the power supply cables that connected with the power supply module of this relay, make sure that the external miniature circuit breaker of the power supply is switched off.

DANGER!

To decline the possibility of electrical shock, all current terminal should be shorted before attempting to remove or replace any modules.

13.1.3 Dismantling

The rack of this relay may be removed from the system cubicle, after which the cubicles may also be removed.

DANGER!

When the station is in operation, make sure that there is an adequate safety distance to other operating parts or equipments, especially as dismantling is often performed by unskilled personnel.

13.2 Disposal

In every country there are companies specialized in the proper disposal of electronic waste.

NOTICE!

Each module used in thedeviceisfixed several specific module type, as oftenly indicated with a label on the backside of the chassis. There are some chances that the modules will be damaged if they are installed in the wrong chassis slot. When removing and replacing modules, it is best to use the label in the chassis as a indicator, so as to make sure each module is installed in the proper slot.

NOTICE!

Strictly observe all local and national regulations when disposing of the device.

14 Manual Version History

In the current version of the instruction manual, several descriptions on existing features have been modified.

Manual Version		Software	Dete	Description of change
Source	New	Version	Date	Description of change
Beta	1.00	1.00	2014-04-15	Form the original manual.
				Update the number of the binary inputs and binary
				outputs
1.00	1 01	1.01	2015 05 21	Add the binary input hardware demo diagrams in the
1.00	1.01	1.01	2015-05-21	binary input tables.
				Update the description of IEC61850 dual-MMS
				Ethernet.
				Add parameters of fault location function.
1.01	1.02	1.02	2016-01-24	Output TEMP_RL is added Internal improvements.
				Update the configurable signals.
				Update the communication description.
1.02	1.03	1 10	2016-08-16	Update the mechanical specifications.
1.02	1.00	1.10	2010-00-10	Update the main CPU module picture.
				Update the setting list.
				Update all the protection functions.
				Add the "4.2 Supervision Alarm and Block" chapter
				Increase the amount of the terminal of BI module.
1.03	2.01	1.20	2017-12-16	Update the logic diagram of the Three-phase
				thermal overload protection.
				Update the content of the "9 Communication
				Protocol" chapter.
2 01	2 02	2.00	2018-06-09	Update the description of the protection functions.
2.01	2.02	2.00	2010 00 00	Update the IDMT curves.
2 03 2 03 2 03 2018-08-21 Modify thedrop-off to p		Modify thedrop-off to pickup ratio to 97%		
2.00	2.00	2.00	2010:00-21	Add GPS time synchronization IEEE 1588
2.03	2.03	2.03	2018-09-21	Add chapter 9.6

Table 14-1Manual version and modification history records